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Abstract. The paper addresses a boundary identification problem in two-dimensional 

steady-state heat conduction. The proposed approach based on the Trefftz method allows 

one to reconstruct the unknown part of a regular domain boundary from the given tempera-

ture measurements  on it, provided that both the temperature and heat flux on the remaining 

part of the boundary are known. The reconstruction of an unknown boundary is done 

through successive approximations with a polynomial or a truncated Fourier series. 

The proposed solution method, whose merit lies in the avoidance of large systems 

of nonlinear equations, is fast converging, accurate and numerically stable, as demonstrated 

in the included numerical examples. 
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1. Introduction 

An important category of problems considered in science and engineering 

are inverse problems. When the system geometry is not fully known but is being 

investigated, such problems are referred to as inverse geometry problems (IGPs). 

Some typical examples could be determining a moving interface between liquid 

and solid phases or nondestructive detection of internal cracks or cavities in mate-

rials. According to the classification proposed in [1], inverse analysis concerning 

IGPs can be applied to problems related to (i) shape and design optimization, 

(ii) identification of defects and (iii) identification of an unknown part of the 

boundary. The paper focuses attention on the latter. 

Most of the studies concerning this task are devoted to problems described 

by Laplace’s equation. As known, Laplace’s equation characterizes a large group 

of physical problems. The present study refers specifically to steady-state isotropic 

heat conduction. 

Numerical reconstruction of the unknown boundary can be achieved by a variety 

of computational approaches, e.g. the radial basis functions method [2], the bound-

ary element regularization method [3], the smoothed grid finite element method [4] 
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or the level set method [5] - to name a few. As the present study employs the Trefftz 

method, we focus particular attention to the approaches applying this method 

or related techniques. The modified collocation Trefftz method for a boundary 

detection problem was used in [6, 7] and the same technique was applied for 

an inverse geometric problem governed by the biharmonic equation [8] and the 

modified Helmholtz equation [9]. The regularized collocation Trefftz approach 

was successfully tested on different shapes in a two-dimensional void detection 

problem [10]. The method of fundamental solutions, which may be viewed as one 

of the Trefftz methods, also belongs to computational techniques effective in IGPs, 

see e.g. [11, 12]. 

The cited references concerning the solution of a boundary identification 

problem by the (modified) collocation Trefftz method propose a discrete recon-

struction of an unknown boundary. In contrast, the present study uses a polynomial 

or a Fourier expansion of the unknown boundary. The computational procedure 

first outputs the solution of Laplace’s equation by the Trefftz method. The further 

step consists in specification of the coefficients of a polynomial or a Fourier repre-

sentation of the unknown boundary so as to best fit the calculated temperatures 

to their known values. The latter requires solving systems of nonlinear algebraic 

equations but with relatively few unknowns which is the specific value of the 

approach. 

2. Boundary identification problem 

We consider a problem in a finite two-dimensional region Ω  whose boundary 

Ω∂ is composed of two disjoint curves Γ andγ : 

 γΓΩ ∪=∂  (1) 

such that Γ is known and γ unknown. Highly irregular shapes of Ω  will not be 

addressed in this paper as they usually require a division into subdomains and local 

solutions, while the present approach uses global Trefftz-type solutions which 

could fail in complex geometries. We assume that γ is smooth and can be  

described by a function )(xyy = or )(θrr = , depending on the type of coordinates. 

In spite of these constraints on the topology ofΩ , the proposed algorithm allows 

a great variety of shapes occurring in real-world applications.  

The discussed problem is that of stationary heat flow with no heat sources 

or sinks, so the governing equation is 

 Ωin∆ 0=T   (∆ - Laplace operator) (2) 

which we solve subject to 

 Γ
γ

onTT =  (3) 
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 Γ
Γ

onq
n

T
=

∂

∂
 (4) 

where n∂∂  denotes differentiation along the outward normal n. Equations (3) and 

(4) represent an overspecified condition on Γ  (known temperature and heat flux) 

in order to compensate for the missing information concerning geometric charac-

teristics of the problem domain. On the remaining (unknown) part of the boundary, 

we impose a Dirichlet condition: 

 γ
γ

onTT =  (5) 

with γ
T  not necessarily constant. Since γ  is being sought, condition (5) should be 

understood as a given temperature at the points ),( yx  or ),( θr  whose first coordi-

nates are known while second coordinates are to be found. 

3. Trefftz method 

The Trefftz method, developed at the end of the 1920s, has recently become 

very popular. It approximates the solution of a differential equation with a linear 

combination of certain basis functions (named T-complete functions) satisfying the 

given differential equation. For Laplace’s equation in (x, y)-coordinates, the proper 

basis is composed of the functions commonly known as harmonic polynomials: 

 { }...,2,1,)(Im,)(Re,1 =++ kiyxiyx kk  (6) 

In polar coordinates the corresponding basis functions are  

 { }...,2,1,)(sin,)(cos,1 =kkrkr
kk

θθ  (7a) 

unless for to a problem in a multiple domain, when we use the bases: 

 { }...,2,1)(sin,)(cos,)(sin,)(cos),ln(,1 =
−−

kkrkrkrkrr
kkkk

θθθθ  (7b) 

According to the logic of the Trefftz method, the approximate solution of (2)-(5), 

denoted 
app
T , can be written as a linear combination of the form 

 ∑=
K

kkapp UcT
0

 (8) 

with k
U  denoting the T-complete functions of type (6), (7a) or (7b) and k

c  - the 

coefficients to be found. In order to specify the coefficients 
k
c  we minimize 

a functional 



L. Hożejowski 44 

 ( ) ΓΓΦ

Γ

Γ

ΓΓ

Γ
Γ

dq
c

U
cdTUcccc

K

k

k

k

K

kkK

2

0

2

0
10

),...,,( ∫ ∑∫ ∑ 












−

∂

∂
+−=  (9) 

which leads to a system of linear equations: 

 Kk
ck

,...,1,0,0 ==
∂

∂Φ
 (10) 

4. Boundary identification algorithm 

The problem of identification of an unknown boundary γ  can be set up in terms 

of searching for either (x, y)- or (r, θ)-coordinates of the boundary points. Regard-

less of chosen coordinates, the proposed solution scheme assumes reconstruction 

of a boundary through its approximation by a function whose parameters need 

to be specified. The advantage of such an approach  lies in reducing computational 

effort as we are able to recover infinitely many boundary points at the cost of find-

ing only a few parameters of an approximating curve. 

The boundary identification algorithm further described in this section can be 

summarized as follows: 

STEP 1. Approximate the temperature T of a considered body with app
T , using 

the Trefftz method. 

STEP 2. Choose the form of an approximation to γ : with a polynomial )(xPy
N

=  

or a finite trigonometric series )(θ
N

Qr = . 

STEP 3. Choose δ  - the demanded level of accuracy in approximation of the 

given 
γ
T  on γ  by 

app
T  on the graph of )(xP

N
/or )(θ

N
Q . 

STEP 4. Specify the coefficients of )(xP
N /or )(θ

N
Q  for 1=N . If the required 

accuracy δ  is achieved with )(
1
xP /or )(

1
θQ , stop. Otherwise go to STEP 5. 

STEP 5. Increase N by 1. Then specify the coefficients of )(xP
N

/or )(θ
N
Q . 

If the required accuracy δ  is achieved with )(xP
N /or )(θ

N
Q ), stop. Otherwise 

repeat STEP 5. 

4.1. Implementation in (x, y)-coordinates 

In the considered problem we assume that γ  is a smooth curve )(xfy =  which 

we can approximate with an N
th
 degree polynomial: 

 ],[,)(
0

baxxaxP
N n

nN
∈=∑  (11) 
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By construction, )(xP
N  has to agree with γ  at both ends (corresponding to ax =     

and bx = ), hence to determine 1+N  coefficients of the polynomial )(xP
N

, we 

do not need to solve 1+N  equations but only 1−N . 

Condition (5), when expressed in terms of approximate functions, gives 

 )())(,( xTxPxT Napp γ
=  (12) 

which holds in the whole interval [a, b] or at M selected points M
xxx ,...,,

21 . 

In general, such a condition cannot be met in the strict sense, therefore we claim 

fulfilment in a variational sense, i.e. seeking the minimum of a functional 

 
2

0
)(),())(( xTxaxTxP

N n
nappN γ

Φ −= ∑  (13) 

where ⋅  denotes L
2
-norm of a function or an M-dimensional vector. Minimiza-

tion of ))(( xP
N

Φ  leads to a system of nonlinear algebraic equations 

 Nn
a
n

,...,1,0,0 ==
∂

∂Φ
 (14) 

which we solve numerically. It is worth noting that the Trefftz method itself can 

approximate temperature but not shape. However, it is involved in polynomial 

boundary reconstruction through delivering the temperature 
app
T , which appears in 

(13) and consequently in (14).  

Once 
app
T  is found, the polynomial approximations of γ  will be determined 

in order of an increasing degree. Before further description of the procedure, for 

each polynomial )(xP
N

 we define a nonnegative number, )(NE
T

, which measures 

the relative error between the exact and calculated temperature on the unknown 

boundary: 

 
γ

γ

T

TT

NE
xNPy

app
T

−

=

= )(
)( , (15) 

provided 0≠
γ
T . At the N

th
 step, )(NE

T
 will be compared with the maximum 

admissible error, δ , chosen prior to computation. The first reconstruction ofγ is 

with a polynomial of the lowest degree (0 or 1). We check whether this initial 

approximation, say )(
1
xP , is sufficiently accurate, i.e.  whether δ<)1(

T
E . If so, 

we have the solution. Otherwise, we search for a polynomial of degree 2, whose 

coefficients minimize (13) and unless δ<)2(TE , we construct (in the same  
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manner) the next polynomial approximations of degree 3 4N , ,...= , until we 

achieve δ<)(NE
T  for some N. Note that we derive the coefficients of )(xP

N
’s 

from nonlinear equations (14). Numerical procedures for solving nonlinear equa-

tions usually need a certain initial guess. If 2=N , we plot ))((
2
xPΦ  versus 

2
a  in 

order to suggest initial value for 
2
a , while 

0
a  and 

1
a  can be expressed as functions 

of
2
a . For 2>N , one can take the (N – 1)

th
 polynomial as an initial guess for find-

ing the coefficients of the N
th
 polynomial. 

4.2. Implementation in (r, φ)-coordinates 

Described in polar coordinates, the unknown boundary is assumed to be 

the graph of a function )(θfr = . A reasonable approximation of )(θf seems to be 

that by a finite series of trigonometric functions: 

 
0 0 11

( ) ( cos( ) sin( )) [ ]
N

N n n
Q a a n b n , ,θ θ θ θ θ θ= + + ∈∑  (16) 

in which we admit θ from 0 to 2π. The adjustment of 
n
a ’s and 

n
b ’s  runs similarly 

to the (x,y) case, i.e. through minimization of a functional ))(( θΦ
N
Q analogous to 

(13). Finding )(θ
N
Q  requires more computation in comparison to finding a poly-

nomial )(xP
N

 as we have to specify 12 +N  parameters of the N
th
 order approxi-

mation, whereas in (11) only 1+N . 

The start-up approximation of γ  is of 0
th
 or 1

st
 order. When )()(

10
θθ ff = , we 

first take 
00

)( aQ =θ . Otherwise, we put θθθ sincos)(
1101
baaQ ++=  and specify 

e.g. 
1
b  through plotting ))((

1
θΦ Q versus 

1
b  (while 

0
a  and 

1
a  can be expressed in 

terms of
1
b ). Further proceeding runs similar to that described in Section 4.1. 

5. Numerical results 

In this section, we present a couple of numerical examples. The computations 

were performed on numerically simulated (synthetic) temperature, as in the refer-

ence papers [6-11]. Such an approach allows convenient and accurate evaluation 

of the results because the exact solution is known. 

For better assessment of the solution method, each example was based on 

a different analytical solution to Laplace’s equation. The measurements on γ  were 

simulated at M points uniformly distributed on the given range of x or θ . We 

assume the algorithm stops when )(NE
T

 attains  ~10
‒6

. For assessing the accuracy 

of boundary reconstruction in measurable terms, we introduce the error )(Nε , 

defined by 
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γ

γγ

ε

−

=

app
N

N )(  (17) 

Example 1. 

Let the problem domain be described by inequalities 

 




≤≤

≤≤

)(0

10
:

xfy

x
Ω  (18) 

where 

 
4

)2(cossin21
)(

3
+

+++
=

x

xxx
xf

π

 (19) 

will be the unknown boundary γ  to be found. The exact temperature is 

1cos),( ++= xxeyxT
y . We take T-complete functions of the type (6) with 

14=K  in the expansion (8) and 30=M . The problem domain is presented 

in Figure 1(a) and a polynomial reconstruction of γ in Figure 1(b). 

 

 

Fig. 1. Problem domain Ω  (a) and boundary identification by a polynomial 

of degree N = 8 (b) 

Further evidence concerning accuracy and rate of convergence is given in Table 1. 

Table 1 

Errors for stopping criterion, ET(N), and errors of boundary detection, ε(N) 

N 2 3 4 5 6 7 8 

E
T(N), (%) 3.56 3.49 0.37 0.35 0.021 0.020 0.0008 

ε(N), (%) 12.14 11.80 1.26 1.17 0.073 0.066 0.0027 
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The errors listed in Table 1 show high accuracy and fast convergence of 

the solution procedure as only few iterations were sufficient for very accurate 

reconstruction of the unknown boundary. 
 

Example 2. 

This example refers to a region defined (in polar coordinates) by inequalities 

 




≤≤

<≤

)(0

20
:

θ

πθ
Ω

fr
 (20) 

with 

 
θ

θπθ
θ

2sin5

4sin)3(cos3
)(

+

−+
=f  (21) 

When constrained to ]2,[ ππθ ∈ , the function )(θf  will be the unknown 

boundary to be identified. In this example we take 4sincosh),( ++= yyxyxT . 

The considered case requires T-complete functions (7a). We take 16=K  in (8) and 

60=M . Figure 2a shows the domain boundaries (known and unknown) and Figure 

2b compares the exact γ  with its approximation corresponding to N = 8. 

 

 

Fig. 2. Problem domain Ω  (a) and boundary identification by expansion (16) with N = 8 (b) 

Table 2 provides with more information concerning convergence properties and 

accuracy of the algorithm. 

Table 2 

Errors for stopping criterion, ET(N), and errors of boundary detection, ε(N) 

N 1 2 3 4 5 6 7 8 

E
T(N), % 4.21 3.87 1.45 0.24 0.027 0.007 0.002 0.0002 

ε(N), % 18.05 15.21 8.59 1.92 0.29 0.076 0.023 0.003 
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As in the previous example, we achieved very good accuracy of the boundary 

identification. Moreover, the small number of iterations before terminating the 

procedure indicates fast convergence. 

 

Example 3. 

We consider a doubly connected domain described in polar coordinates by 

 




≤≤

<≤

)()(

20
:

θθ

πθ
Ω

grf
 (22) 

where 

 
θ

θθ
θ

4sin6

2sincos4
)(

+

−
=g  (23) 

is its outer boundary where the temperature was known at M = 60 points and 

 
θθ

θ
θ

2sincos12

3cos4
)(

2
+

+
=f  (24) 

is the unknown inner boundary. We generated the measurements from 

310cos),( ++= xyxeyxT
y . The suitable Trefftz-bases for this example are those 

of type (7b) and we take 37=K . Figure 3 presents the boundaries of Ω  and the 

approximation of γ found by the algorithm. 

 

 

Fig. 3. Problem domain Ω  (a) and boundary identification by expansion (16) with N = 9 (b) 

Table 3 includes information for assessing the obtained approximations. 

 

(N = 9) 
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Table 3 

Errors for stopping criterion, ET(N), and errors of boundary detection, ε(N) 

N 2 3 4 5 6 7 8 9 

E
T(N), % 2.94 0.30 0.073 0.034 0.031 0.003 0.0012 0.0004 

ε(N), % 20.09 1.68 0.466 0.235 0.236 0.023 0.014 0.0042 

 

The present example, like the two already discussed, demonstrated very high 

accuracy of the final-order solution and fast convergence of the algorithm. 

6. Sensitivity to input errors 

The calculation was repeated using the input data disturbed by random errors. 

For that purpose we generated M normally distributed  random numbers from 

the range between 3%−  and %3 . Such a level of noise was intended to create 

realistic test data. The evaluation of the influence of those noisy inputs on the final 

boundary reconstruction is through calculating a relative error δ  given by 

 
app

N

app
N

app
N

γ

γγ
δ

−

=

~

 (25) 

where 
app
Nγ
~  denotes the N

th
-order approximation of γ obtained from noisy data. 

It seems crucial to analyze the highest order reconstruction provided by the 

algorithm in case the errors accumulated from iteration to iteration. Figure 4 

presents the results of boundary identification from the noisy data. The depicted 

approximate profiles of γ  are those obtained for 8=N  in Examples 1-2 and 

9=N  in Example 3. 

 

 

Fig. 4. Results of boundary identification from data containing 3% noise 

exact boundary (Example 3) 
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Visual inspection of Figure 4 shows a fairly good agreement between exact 

and approximate positions of the corresponding boundary points. It indicates small 

impact of the measurement errors on the predicted locations of the unknown 

boundary points. In support of this conclusion, we present the errors (δ ) between 

the reconstructions of γ  from clean and noisy data (see Table 4). 

Table 4 

Impact of 3% noise in the input data on boundary identification 

Example 1 

(N = 8) 

Example 2 

(N = 8) 

Example 3 

(N = 9) 

δ [%] 2.06 3.01 4.06 

 

The percentage changes in boundary approximations - when compared to 

the measurement errors - are of the same order of magnitude. In conclusion, 

at the assumed level of noise, the algorithm turned out to be stable. 

7. Conclusions and final remarks 

We proposed an algorithm for identification of the unknown part of a domain 

boundary. Unlike the existing approaches based on the Trefftz method, the present 

algorithm offers a continuous solution which accurately recovers the unknown 

shape after a few iterations, as demonstrated in the included examples. Small 

random errors introduced to the input data resulted in comparably small disturb-

ances in the final boundary reconstructions, which proved numerical stability 

of the solutions. Another advantage of the method is that it separates specification 

of the coefficients: those referring to temperature approximation are obtained from 

a linear system of equations while the coefficients of a shape approximation - from 

a distinct nonlinear system of equations with relatively few unknowns. That way, 

large (and numerically problematic) systems of nonlinear equations can be avoided. 

Finally, the proposed method can be extended without changes on boundary identi-

fication problems governed by other linear differential equations for which the 

T-complete functions are known or can be somehow generated. 
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