
Journal of Applied Mathematics and Computational Mechanics 2016, 15(2), 11-21 

www.amcm.pcz.pl p-ISSN 2299-9965 

 DOI: 10.17512/jamcm.2016.2.02 e-ISSN 2353-0588 

IMPLICIT SOLUTION OF 1D NONLINEAR POROUS MEDIUM 

EQUATION USING THE FOUR-POINT NEWTON-EGMSOR 

ITERATIVE METHOD 

J.V.L. Chew, J. Sulaiman 

Faculty of Science and Natural Resources, University Malaysia Sabah 
 Sabah, Malaysia 

jackelchew93@gmail.com, jumat@ums.edu.my 

Abstract. The numerical method can be a good choice in solving nonlinear partial differen-

tial equations (PDEs) due to the difficulty in finding the analytical solution. Porous medium 

equation (PME) is one of the nonlinear PDEs which exists in many realistic problems. 

This paper proposes a four-point Newton-EGMSOR (4-Newton-EGMSOR) iterative  

method in solving 1D nonlinear PMEs. The reliability of the 4-Newton-EGMSOR iterative 

method in computing approximate solutions for several selected PME problems is shown 

with comparison to 4-Newton-EGSOR, 4-Newton-EG and Newton-Gauss-Seidel methods. 

Numerical results showed that the proposed method is superior in terms of the number 

of iterations and computational time compared to the other three tested iterative methods. 

 

Keywords: porous medium equation, finite difference scheme, Newton method, Explicit 

Group, MSOR 

1. Introduction 

Most of the nonlinear partial differential equations (PDEs) are difficult to be 

solved by the analytical approach. Since the rapid advancement of computers, 

numerical methods have grown drastically to be the choice in solving nonlinear 

PDEs. This paper considers a numerical approach for the solution of one of the 

nonlinear PDEs which is a porous medium equation (PME). This equation has 

great practicality in many realistic problems such as a thin film flow through 

a porous medium [1], diffusion of heat beneath human skin [2] and some interest-

ing applications such as the dispersion of miscible fluid through a porous medium 

[3, 4] and the instability phenomena in the oil recovery technology [5-7]. Currently, 

the last two applications have been widely studied for the development of a theo-

retical model and finding the approximate analytical solution to the developed 

model. For instance, Meher et al. [3, 4] have discussed the dispersion phenomena 

inside porous media that occurs in oil reservoir and applied the Adomian decompo- 
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sition method and the Backlund transformation in obtaining the analytical solutions 

of the problems. Meher et al. [5, 6] have applied the Adomian decomposition 

method and the exponential self similar solutions technique in solving PME which 

is formulated from the instability phenomena in double phase flow through porous 

media. In fact, there is much literature involving the solution of PME problems that 

can be found in [7-12]. Motivated and inspired by the ongoing research in solving 

PME, this paper proposes a four-point Newton-EGMSOR (4-Newton-EGMSOR) 

iterative method in solving 1D nonlinear PMEs. Actually, the method is a combina-

tion of four-point EGMSOR iteration which is initiated by Sulaiman et al. [13] 

with the Newton method that is used to handle the nonlinearity of the problem. 

This paper dealt with an efficient numerical technique that can reduce the computa-

tional time while maintaining the accuracy of the approximate solution of PMEs. 

In this paper, to secure computational stability, a PME approximation equation 

is developed by using the implicit finite difference scheme. A system of nonlinear 

equations is formed at each time level. The Newton method is then used to linearize 

and transform the developed system of nonlinear equations into the corresponding 

system of linear equations. The resultant linear system is finally solved by the four-

point EGMSOR iterative methods. Four examples of the PMEs are chosen in order 

to illustrate the capability of the 4-Newton-EGMSOR iterative method. The relia-

bility of the proposed method in computing approximate solutions for the selected 

PME problems is shown with comparison to 4-Newton-EGSOR, 4-Newton-EG and 

Newton-Gauss-Seidel (GS) iterative methods. Consider a general form of the PME 

problem be defined as 
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where K and m are real numbers. 

Solution domain x can be divided uniformly into d subintervals with distance 

∆x. Time step ∆t can also be obtained by dividing the total time T at fixed sizes of 

s. Both steps, ∆x and ∆t, can be defined as 
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2. Implicit finite difference approximation equation 

To formulate 4-Newton-EGMSOR for solving Eq. (1), a finite grid network 

is built as a guide for development of the three iterative methods and facilitating 

the implementation of computational algorithm, refer Figure 1. 
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Fig. 1. Finite grid network 

The implementation of the 4-Newton-EGMSOR method will be applied onto 

the interior grid points in Figure 1, i.e. grid point 1 to n, until the convergence 

of approximate solutions is achieved. Before discretizing, problem (1) can be 

rewritten as 
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Now, by using the implicit finite difference scheme, (3) is discretized to derive 

an approximation equation as 
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for i = 1, 2, 3, ..., n and j = 0,1, 2, 3, ..., s, where 
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Eq. (4) is obviously a nonlinear finite difference approximation equation that 

is used to form a system of nonlinear equations at each time level j. To apply 

the Newton method on Eq. (4), define a nonlinear function F for each interior grid 
 

point (xi , tj+1
) at time level tj+1

 as follows: 
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where ),...,,( 1,1,21,11 ++++
= jnjjj uuuu . 

By considering all interior grid points in Figure 1, Eq. (5) leads to nonlinear system 

as 

 niuF ji ...,,3,2,1,0)(
1

==
+

 (6) 

Now, the Newton method can be used to calculate the Jacobian matrix on (6) 

in order to construct the corresponding linear system. Indicated with k-th numerical 

solutions at each time level tj+1
, Eq. (6) is transformed into a linear system as 
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The unknown vector h∆  is required to be solved so that the vector of approxi-

mate solutions 

( )k
ju 1+  can be computed iteratively by using the following expression: 
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3. Formulation and implementation of the four-point 

EGMSOR method 

As discussed in the second section, the coefficient matrix A in linear system (7) 

is sparse and large-scaled, and therefore needs an efficient iterative method to be 

solved. A number of iterative methods can be found in [14-17]. In addition to that, 

Evans [18] has proposed a four-point block iterative method which is also known 

as Explicit Group (EG) in solving large linear systems. Again, the Successive Over 

Relaxation (SOR) method was introduced by Young [15] and it is the most known 

and widely used iterative technique in solving a system of linear algebraic equa-

tions. Due to the advantage of the SOR method, Kincaid and Young [17] have sug-

gested Modified Successive Over Relaxation (MSOR) method, which is classified 

as a point iterative method together with two weighted parameters, ωr and ωb, in 

order to speed up the rate of convergence in SOR. Therefore, this paper considers 

the application of the four-point EGMSOR iterative method for solving the gener-

ated linear system and this iterative method is a combination between the EG 

and MSOR methods. Before formulating the four-point EGMSOR iterative method, 

let the linear system in (7) be rewritten in general form as 

 bhA =∆  (9) 

where 
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Now, the coefficient matrix A in Eq. (9) needs to be decomposed as 

 VLDA −−=  (10) 

where D, L and V are the diagonal, lower triangular part and upper triangular part 

of matrix A, respectively. Then, the formulation of the SOR method is given by [15] 

 ( ) ( ) ( )( ) ( ) ( ) .1
111
bLDhDVLDh

kk −−+

−+∆−−−=∆ ωωωωω  (11) 

When ω = 1, the SOR method can be reduced to the standard GS iterative method. 

Apart from the concept of the SOR method, the MSOR methods can be derived 

from (11) with two weighted parameters, ω
r
 and ω

b
. In fact, this concept is similar 

to the SOR method with the red-black ordering strategy. The formulation of the 

MSOR method is given by [17] 
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And then when ω
r
 = ω

b
, the MSOR method reduces to the red-black SOR method. 

Besides that, by setting ω
r
 = ω

b
 = 1, (12) will become the red-black GS method. 

Since this paper uses four-point EGMSOR to solve the linear system that is trans-

formed by using the Newton method, the derivation of four-point EGMSOR  

method will be constructed over the linear system (9) as follows. 

Referring to Figure 1, a group of four points is considered to be used to form 

a linear system ( )4 4×  as follows. 
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for t = 1, 2, 3, 4. Eq. (13) can be easily inverted and derived into a four-point 

EGMSOR formula that is similar to Eq. (12) as follows: 

 

( )

( )

( ) 11

1 2 3 1

1 1 1 1 2 1 31 1

2 2 1 2 2 2 32 2

3 3 1 3 2 3 33 3

1

k k

i ,i i ,i i ,i i ,ii i

i ,i i ,i i ,i i ,ii i

r r

i ,i i ,i i ,i i ,ii i

i ,i i ,i i ,i i ,ii i

a a a ah h S

a a a ah h

a a a ah h

a a a ah h

ω ω

−+

+ + +

+ + + + + + ++ +

+ + + + + + ++ +

+ + + + + + ++ +

∆ ∆     
    ∆ ∆     = − +
    ∆ ∆
    

∆ ∆     

2

3

4

S

S

S

 
 
 
 
 
 

 (14a) 

 

( )

( )

( ) 11

1 2 3 1

1 1 1 1 2 1 31 1

2 2 1 2 2 2 32 2

3 3 1 3 2 3 33 3

1

k k

i ,i i ,i i ,i i ,ii i

i ,i i ,i i ,i i ,ii i

b b

i ,i i ,i i ,i i ,ii i

i ,i i ,i i ,i i ,ii i

a a a ah h S

a a a ah h

a a a ah h

a a a ah h

ω ω

−+

+ + +

+ + + + + + ++ +

+ + + + + + ++ +

+ + + + + + ++ +

∆ ∆     
    ∆ ∆     = − +
    ∆ ∆
    

∆ ∆     

2

3

4

S

S

S

 
 
 
 
 
 

 (14b) 

Hence, by using Eqs. (14a) and (14b), the four-point EGMSOR algorithm 

can be given in Algorithm 1. 

Algorithm 1. Four-point EGMSOR 

i.  Initialize ( ) 10100

1
10,10,0000.1
−−

+
←←← εε Newtonju  

ii. For sj ,,2,1,0 …= , implement 

a. Set 
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, A and b 

c. For 13,...,18,2 −= ni , compute Eq. (14a) iteratively. 

d. For 21,...,26,10 −= ni , compute Eq. (14b) iteratively. 

e. For 5−= ni , compute ungroup points. For more detail, see in [19]. 

iii. Convergence test 
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k
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k
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1
. If converges, go to next time 

level. Otherwise, back to (i). 

vi. Display approximate solutions. 

 

The estimate values of the two weighted parameters are determined within 

range ± 0.01 by running Algorithm 1 with a different combination of ω
r
 and ω

b
. 

The combination that gives the least number of iterations will be selected as 

optimal values. 
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4. Numerical experiments 

In order to verify the effectiveness of 4-Newton-EGMSOR iterative method 

in solving (1), four selected PME problems are used together with other three test-

ed iterative methods, i.e. 4-Newton-EGSOR, 4-Newton-EG and Newton-GS 

iterative methods, that act as comparison to the proposed iterative method. For the 

comparison purpose, three criteria will be considered, namely the number of itera-

tions (Iter), execution time, which is measured in seconds (Time), and maximum 

absolute error (MAE). In addition to that, tolerance error for convergence is 

ε = 10
–10
. Below is the following for four examples of PME problems. 

Example 1 [19] 

Consider K = 1 and m = 1 in (1) gives 

 
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

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dx

du
u

dx

d

dt

du
 (15) 

subject to the initial condition, ( )
21

0, CxCxu += , and satisfies the exact solution, 

( )
2

2

11
, CtCxCtxu ++= , where 1

C  and 2
C  are arbitrary constants. For the numerical 

implementation, constants are set to be 1
1
=C  and 0

2
=C . 

Example 2 [19] 

Consider K = 0.5 and m = –1 in (1) gives 

 




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dx

du
u

dx

d

dt

du 1
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subject to the initial condition, ( ) ( ) 1
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−
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tion, ( ) ( ) 1

2

2

11 5.0,
−

+−= CtCxCtxu , where 1C  and 2C  are arbitrary constants. To 

implement the iterative methods, constants chosen are 6.0
1
=C  and 3.1

2
=C . 

Example 3 [8] 

Consider K = 1 and m = 2 in (1) gives 

 
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dx

du
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dx
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dt

du 2  (17) 

subject to the initial condition, ( ) ( ) 1210,
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Ct < ,
 where C is an arbitrary constant. For the imple- 

mentation purpose, the constant is C = 2. 
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Example 4 [19] 

Consider K = 0.5 and m = –2 in (1) gives 

 







= −

dx

du
u

dx

d

dt

du 2
5.0  (18) 

subject to the initial condition, ( ) ( ) 2

1

21
20,

−

+= CxCxu , and satisfies the exact solu- 

tion, ( ) ( ) 2

1

2

2

11
2,

−

+−= CtcxCtxu , where 1C  and 2C  are arbitrary constants. To test 

the numerical methods, constants are set to be 35.01 =C  and 35.12 =C . 

The numerical results obtained have been summarized in Tables 1-3. 

Table 1 

Comparison of the number of iterations (Iter), execution time in seconds (Time) and 

maximum absolute errors (MAE) for the iterative methods using Examples 1 and 2 

  Example 1 Example 2 

n Method  Iter Time MAE  Iter Time MAE 

64 GS  3835 2.38 2.76E-08  1720 1.13 2.03E-05 

 EG  1109 0.34 5.88E-09  504 0.55 2.03E-05 

 EGSOR ω = 1.59 263 0.12 3.43E-11 ω = 1.47 175 0.25 2.03E-05 

 EGMSOR 
ω

r
 = 1.59 

ω
b
 = 1.58 

240 0.10 2.99E-11 
ω

r
 = 1.47 

ω
b
 = 1.48 

147 0.16 2.03E-05 

128 GS  13 678 7.50 1.22E-07  6034 4.06 2.02E-05 

 EG  3899 1.65 2.64E-08  1718 1.73 2.03E-05 

 EGSOR ω = 1.76 513 0.34 4.28E-11 ω = 1.68 337 0.41 2.03E-05 

 EGMSOR 
ω

r
 = 1.76 

ω
b
 = 1.77 

455 0.31 1.61E-11 
ω

r
 = 1.68 

ω
b
 = 1.69 

275 0.38 2.03E-05 

256 GS  48 395 38.58 5.33E-07  20 907 27.03 2.00E-05 

 EG  13 799 11.20 1.10E-07  5976 11.25 2.02E-05 

 EGSOR ω = 1.87 1010 1.37 6.90E-11 ω = 1.82 656 1.35 2.03E-05 

 EGMSOR 
ω

r
 = 1.87 

ω
b
 = 1.88 

879 1.20 3.62E-11 
ω

r
 = 1.82 

ω
b
 = 1.83 

532 1.14 2.03E-05 

512 GS  169 693 252.94 2.10E-06  71 385 287.34 1.93E-05 

 EG  48 666 77.31 4.99E-07  20 701 97.75 2.00E-05 

 EGSOR ω = 1.93 2027 5.33 7.69E-10 ω = 1.91 1297 4.46 2.03E-05 

 EGMSOR 
ω

r
 = 1.93 

ω
b
 = 1.94 

1680 4.51 4.23E-11 
ω

r
 = 1.90 

ω
b
 = 1.91 

1050 3.82 2.03E-05 

1024 GS  587 031 1712.49 7.62E-06  239 975 1741.01 1.72E-05 

 EG  170 300 557.86 2.08E-06  70 888 571.03 1.94E-05 

 EGSOR ω = 1.97 4072 22.43 1.54E-10 ω = 1.95 2477 24.67 2.03E-05 

 EGMSOR 
ω

r
 = 1.96 

ω
b
 = 1.97 

3417 19.72 1.18E-10 
ω

r
 = 1.95 

ω
b
 = 1.95 

2078 22.87 2.03E-05 
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Table 2 

Comparison of the number of iterations (Iter), execution time in seconds (Time) and 

maximum absolute errors (MAE) for the iterative methods using Examples 3 and 4 

  Example 3 Example 4 

n Method  Iter Time MAE  Iter Time MAE 

64 GS  1344 1.17 8.39E-05  2015 1.26 2.88E-06 

 EG  402 0.38 8.39E-05  592 0.53 2.89E-06 

 EGSOR ω = 1.35 216 0.13 8.39E-05 ω = 1.49 191 0.30 2.90E-06 

 EGMSOR 
ω

r
 = 1.35 

ω
b
 = 1.30 

202 0.13 8.39E-05 
ω

r
 = 1.49 

ω
b
 = 1.49 

165 0.17 2.90E-06 

128 GS  4824 2.84 8.39E-05  7082 4.90 2.90E-06 

 EG  1361 1.00 8.39E-05  2033 1.85 2.94E-06 

 EGSOR ω = 1.58 437 0.41 8.39E-05 ω = 1.69 380 0.89 2.96E-06 

 EGMSOR 
ω

r
 = 1.59 

ω
b
 = 1.54 

405 0.36 8.39E-05 
ω

r
 = 1.69 

ω
b
 = 1.70 

316 0.44 2.96E-06 

256 GS  17 308 20.03 8.39E-05  24 325 45.42 2.71E-06 

 EG  4836 6.77 8.39E-05  7007 15.11 2.92E-06 

 EGSOR ω = 1.74 873 1.47 8.39E-05 ω = 1.83 734 1.98 2.97E-06 

 EGMSOR 
ω

r
 = 1.74 

ω
b
 = 1.74 

810 1.21 8.39E-05 
ω

r
 = 1.83 

ω
b
 = 1.84 

609 1.42 2.97E-06 

512 GS  61 658 270.11 8.40E-05  81 729 354.79 1.86E-06 

 EG  17 333 46.85 8.39E-05  23 769 112.83 2.73E-06 

 EGSOR ω = 1.86 1718 5.38 8.38E-05 ω = 1.91 1428 5.82 2.98E-06 

 EGMSOR 
ω

r
 = 1.87 

ω
b
 = 1.86 

1563 4.38 8.39E-05 
ω

r
 = 1.91 

ω
b
 = 1.91 

1202 4.76 2.98E-06 

1024 GS  218 147 2008.35 8.43E-05  265 698 2293.23 3.33E-06 

 EG  61 779 342.02 8.40E-05  79 057 733.85 1.89E-06 

 EGSOR ω = 1.93 3344 20.49 8.39E-05 ω = 1.95 2881 26.41 2.97E-06 

 EGMSOR 
ω

r
 = 1.93 

ω
b
 = 1.92 

3066 16.83 8.39E-05 
ω

r
 = 1.95 

ω
b
 = 1.96 

2311 19.75 2.98E-06 

Table 3 

Reduction in percentages of the iterative methods compared with the GS method 

M Method 
Number of iterations Execution time in seconds 

Example 1 Example 2 Example 3 Example 4 Example 1 Example 2 Example 3 Example 4 

64 EG 71.08% 70.70% 70.09% 70.62% 85.71% 51.33% 67.52% 57.94% 

 EGSOR 93.14% 89.83% 83.93% 90.52% 94.96% 77.88% 88.89% 76.19% 

 EGMSOR 93.74% 91.45% 84.97% 91.81% 95.80% 85.84% 88.89% 86.51% 

128 EG 71.49% 71.53% 71.79% 71.29% 78.00% 57.39% 64.79% 62.24% 

 EGSOR 96.25% 94.41% 90.94% 94.63% 95.47% 89.90% 85.56% 81.84% 

 EGMSOR 96.67% 95.44% 91.60% 95.54% 95.87% 90.64% 87.32% 91.02% 

256 EG 71.49% 71.42% 72.06% 71.19% 70.97% 58.38% 66.20% 66.73% 

 EGSOR 97.91% 96.86% 94.96% 96.98% 96.45% 95.01% 92.66% 95.64% 

 EGMSOR 98.18% 97.46% 95.32% 97.50% 96.89% 95.78% 93.96% 96.87% 

512 EG 71.32% 71.00% 71.89% 70.92% 69.44% 65.98% 82.66% 68.20% 

 EGSOR 98.81% 98.18% 97.21% 98.25% 97.89% 98.45% 98.01% 98.36% 

 EGMSOR 99.01% 98.53% 97.47% 98.53% 98.22% 98.67% 98.38% 98.66% 

1024 EG 70.99% 70.46% 71.68% 70.25% 67.42% 67.20% 82.97% 68.00% 

 EGSOR 99.31% 98.97% 98.47% 98.92% 98.69% 98.58% 98.98% 98.85% 

 EGMSOR 99.42% 99.13% 98.59% 99.13% 98.85% 98.69% 99.16% 99.14% 
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5. Conclusion 

In this paper, the effectiveness of the 4-Newton-EGMSOR in solving 1D non-

linear PMEs as compared with other three tested iterative methods, i.e. 4-Newton-

-EGSOR, 4-Newton-EG and Newton-GS iterative methods, have been demonstrat-

ed by using four PME problems. The numerical results presented in Tables 1 and 2 

showed that the proposed iterative method requires a much lesser number of itera-

tions and computational time in obtaining numerical solutions as compared to the 

other three tested iterative methods. By using the Newton-GS as a control method, 

4-Newton-EGMSOR has a reduced number of iteration of approximately 84.97- 

-99.42% and computational time approximately 85.84-99.16%, see in Table 3. The 

performance showed by the 4-Newton-EGMSOR is aided by the use of two 

weighted parameters, ω
r
 and ω

b
. When these two weighted parameters achieved 

their optimal choices, the maximum speed of convergence in solving the PME 

problems can be reached. And in terms of the accuracy of the iterative methods, 

all four tested numerical methods have good agreement. Therefore, it can be con-

cluded that the 4-Newton-EGMSOR iterative method can be a promising technique 

for solving different types of nonlinear partial differential equation problems. 

In this paper, however, all four iterative methods can be classified under a family 

of full-sweep iterative methods. Hence, for future work, this study will be extended 

for a family of half-sweep iterative methods [21-24]. 
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