
Journal of Applied Mathematics and Computational Mechanics 2015, 14(4), 105-113 

www.amcm.pcz.pl p-ISSN 2299-9965 
 DOI: 10.17512/jamcm.2015.4.10 e-ISSN 2353-0588 

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM 

OF TIME-FRACTIONAL HEAT CONDUCTION 

IN A TWO-LAYERED SLAB 

Stanisław Kukla, Urszula Siedlecka 

Institute of Mathematics, Czestochowa University of Technology 

Częstochowa, Poland 

stanislaw.kukla@im.pcz.pl, urszula.siedlecka@im.pcz.pl 

Abstract. In this paper the Laplace transformation for solving the problem of fractional 
heat conduction in a two-layered slab has been applied. The different orders of Caputo 
derivative in the time-fractional equation governed the heat transfer in the layers are 
assumed. The inverse Laplace transform by using a numerical method is determined. 
The numerical results obtained by using of the eigenfunctions method and by numerically 
inverting the Laplace transform are compared. 
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1. Introduction 

Classical models of the heat conduction are derived with assumption of the 
Fourier law of heat transfer. The heat conduction problems in multi-layered bodies 
based on the Fourier law is the subject of paper [1] by Haji-Sheikh and Beck. Exact 
solutions of these problems for multi-layered slabs, cylinders and spheres are 
presented by Özişik in book [2]. 

A generalization of the Fourier law leads to fractional heat conduction. 
The fractional heat equation includes a fractional derivative with respect to space 
and/or time variable. The problems of fractional heat conduction are the subject 
of numerous works, for instance references [3-7]. In book [3] by Povstenko 
the equations obtained by generalizations of the time-nonlocal Fourier’s, Fick’s 
and Darcy’s laws are discussed. The equations in Cartesian, polar, cylindrical and 
spherical coordinates are considered. The problems of heat conduction in a semi-
infinite or an infinite composite medium consisting of two regions characterizing 
by different orders of the time-fractional Caputo derivative in the heat equation 
were studied by Povstenko in papers [4-7]. The presented solutions are derived 
with assumption that the two considered solids are in perfect thermal contact. 
The heat conduction in a multi-layer slab governed by a time-fractional equation is 
discussed by Siedlecka and Kukla in reference [8]. The classical convective bound-
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ary conditions and the classical conditions describing the perfect contact of the sol-
ids were assumed. To solving the problem the eigenfunctions method was applied. 
Application of the Laplace transformation to solving the fractional differential 
equation is shown by Podlubny in the book [9]. The inverse of the Laplace trans-
form can be determined numerically. The methods for numerical inversion of 
the Laplace transforms are presented in papers [10, 11]. 

In this paper, a solution of the time-fractional heat conduction in a two-layered 
slab is presented. The physical Robin condition on the sphere surface and the per-
fect contact of the layers are assumed. The Laplace transformation is applied and 
the temperature in the slab is obtained by using a method of numerical inversion 
of the Laplace transforms. 

2. Formulation of the problem 

Consider a slab consisting of two layers with thermal conductivity iλ  and ther- 
mal diffusivity .ia  The time-fractional differential equation of the heat conduction 

in the i-th layer is 
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where ( ),iT x t  is a temperature in the i-th layer and ( ),iq x t  is a volumetric energy 

generation, 0 0,x =  2x  and 1x  are coordinates specifying surfaces of the slab 

boundaries and an interface between the layers, respectively, iα  denotes an order 

of the Caputo fractional derivative with respect to time t. The Caputo derivative 
of order α  is defined by [9] 
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We assume the Robin boundary conditions [3] at 0x =  and 2x x=  
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where ,La  Ra  are heat transfer coefficients, ( ) ,LT t  ( )RT t  are surrounding tem-

peratures and RLDα  denotes the Riemann-Liouville fractional derivative of order .α  

Moreover, the conditions of the perfect contact of the layers are satisfied [3] 
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and the initial condition is 

 ( ) ( ) [ ]1,0 , , , 1,2i i i iT x f x x x x i−= ∈ =   (7) 

The Riemann-Liouville fractional derivative occurring in equations (3), (4) and (6) 
is defined by [9] 
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The conditions (3), (4) of the convective heat transfer between the slab and the 
surroundings are called the physical Robin conditions [3]. Substituting 1 2 1α α= =  

in equations (3), (4) the classical conditions of the third kind are obtained. These 
conditions in the theory of fractional heat transfer are also called mathematical 
Robin conditions [3]. In this case the condition (6) of equality of the heat fluxes at 
the interface assumes also a classical form. A solution of the heat conduction prob-
lem in the slab under the physical Robin boundary conditions by using the Laplace 
transformation is presented in Section 3 and a solution of the problem under 
the mathematical Robin boundary conditions applying the eigenfunctions method 
is shown in Section 4. 

3. Application of the Laplace transformation 

In order to solve the problem (1)-(7) we use the Laplace transformation with 
respect to time t  which is defined by  

 ( ) ( )
0
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∞
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where s  is a complex parameter. The following property of the Laplace transfor-
mation of a fractional derivative will be used [4] 
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where 0 1α< ≤ . Applying the Laplace transformation to equation (1) and using 
the property (10), we obtain an ordinary differential equation in the form 



S. Kukla, U. Siedlecka 108

( ) ( ) [ ]
2 1

12

1
, , , , 0 1, 1,2

i i
i

i i i i i i

i i i

d T s s
T f x q x s x x x i

a adx

α α

α
λ

−

−− = − − ∈ < ≤ =   (11) 

The boundary conditions (3), (4) in the transform domain are 
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and the conditions (5), (6) assume the form 

 ( ) ( )1 1 2 1, ,T x s T x s=   (14) 

 ( ) ( )1 21 11 2
1 1 2 1, ,

dT dT
s x s s x s

dx dx

α αλ λ− −=   (15) 

The general solution of the equation (11) can be written in the form 
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The Laplace transform (16) cannot be inverted analytically and that is why 
numerical methods for inversion must be applied. In the next section, the solution 
for a case of the heat conduction problem by applying the eigenfunctions method 
is presented and in the following section the numerical results obtained by using 
both methods are compared. 

4. The method of eigenfunctions 

A solution to the problem of the heat conduction in a multi-layered slab with 
a fractional time-derivative of the same order in each layer under the mathematical 
Robin boundary conditions is presented by Siedlecka and Kukla in the paper [8]. 
The temperature distribution in the slab by using the method of eigenfunctions has 
been obtained. In the case of the heat conduction in a two-layer slab, the formula 
for temperature in the layers can be rewritten in the following form: 
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 The functions kΓ  in equation (18) are 

given by 
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where ,Eα β  is the Mittag-Leffler function [12], ,1E Eα α=  and 
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The functions ,i kΨ  occurring in equation (18) are given by 
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and , /i k k iaβ γ= , wherein kγ  is k-th root of the eigenvalue equation 
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The coefficients kN  occurring in equation (20) are given by 

 

( ) ( )( ) ( ) ( )

( ) ( )( )( ) ( ) ( )

2 21
1, 1 1, 1 1, 1

1 1,

2
2 22

2 2,

1
1 1 cos 2 1 sin 2

2

1 1 cos 2 1 sin 2

k k k k k k k

k

k
k k k k k k

k

N x u u x u x
a

B
V d V d V d

a

λ
β β β

β

λ
β

 = + + − − − + 
 

+ + + − − −

 (23) 

where ( )2 1 2, ,k kd x x β= −  

*
1, 1k

k

L

u
a

β λ
=  and .k

k

k

A
V

B
=  

The temperature distribution in the two-layered slab is completely specified by 
equations (17)-(21) and (23) where the eigenvalues kγ  are roots of equation (22). 

5. Numerical examples 

The Laplace transform of the temperature distribution in a two-layered slab 
for different models of the fractional heat conduction is given by equation (16). 
The inverse Laplace transform will be obtained numerically. For numerical inver-
sion of the Laplace transforms a method will be applied which used the following 
formula [10] 
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The results obtained by numerical inversion of the Laplace transform are compared 
with the results computed by using the formula which is obtained by the method 
of eigenfunctions for the case of heat conduction in the two-layered slab under 
the mathematical Robin boundary conductions. The numerical calculations were 
performed for the slab, whose outer boundaries are at: 0 0x = , 2 0.4x =  m and 

the interface is at 1 0.2x = m. The heat transfer coefficients are assumed as: 

La = 1200.0, Ra = 600.0 W/(m2·°C), the thermal diffusivities: 6
1 3.35 10a −= × , 

6
2 5.42 10a −= ×  m2/sα, and the thermal conductivities: 1 16.0λ = , 2 24.0λ =  

W/(m·°C). The initial temperature 0T  and the ambient temperature RT  were 

constants: 0 0T = , 0RT = . The ambient temperature LT  was a function of time: 

( ) sin ,LT t A B tν= +  where A = 100°C, B = 50°C and 12 5000 s .ν π −=  Numerical 

calculations were carried out using the Mathematica package. 
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Table 1 

Comparison of temperatures in the slab at 1=x x  for various values of time ɶt  

and order α  obtained by numerically inverting Laplace transform 

and by eigenfunctions method 

tɶ  α  
Temperature [°C] 

Method of Laplace transform Method of eigenfunctions 

100 

0.8 10.3947 10.3282 

0.9 27.4455 26.9785 

1.0 41.3265 40.9439 

110 

0.8 11.4831 11.5006 

0.9 28.9300 29.4724 

1.0 41.7893 44.0471 

120 

0.8 12.5203 12.5679 

0.9 30.2325 30.1093 

1.0 42.1109 40.0181 
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Fig. 1. Temperature in the slab as a function of 2x x x=ɶ  at the non-dimensional time 

125t =ɶ  for different orders 1 0,75; 0,85; 0,9; 0,95; 1,0α =  and 2 1.0α =  

The temperatures of the slab at 1x x=  computed by using the method of the 

Laplace transform and the method of eigenfunctions for various values of the order 
α  (constant and the same in both layers) and for various non-dimensional time 

2 2/t t x a= ⋅ɶ  are tabulated in Table 1. Comparison of the temperatures shows 

a good agreement of the results obtained by using the two methods. 
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The temperature distribution in the two-layered slab under the physical Robin 
boundary conditions as a function of 2x x x=ɶ  at time 125t =ɶ  is presented 
in Figure 1. The heat conduction in the layers is characterized by various orders 
of time-derivative in the heat equation: 1 0,75; 0,85; 0,9; 0,95; 1,0α =  and 2 1.0.α =  

The remaining data are the same as those presented above. The curves in Figure 1 
show that the ratio of the fractional orders in the layers is significant to the heat 
conduction process in the slab. 

6. Conclusions 

The fractional heat conduction in a two-layered slab under the physical Robin 
boundary conditions was considered. A solution of the problem by the Laplace 
transformation has been obtained. The inverse of the Laplace transform was 
numerically determined. Good agreement shows a comparison of the numerical 
results obtained by numerically inverting the Laplace transform and by the method 
of eigenfunctions applying to the heat conduction problem in a slab under 
the mathematical Robin boundary conditions. Because the numerical inversion 
of the Laplace transform is an ill conditioned problem, an application of a testing 
method is required. Although the presented results referred to the fractional heat 
conduction in the two-layered slab, the method can be applied to the problems 
of the fractional heat conduction in multi-layered slabs. 
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