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Abstract.  The paper is devoted to the analysis of the translocation of the chain-like 
structures (CLS) through the pore in membrane. It focuses on the so-called passage time 
and the principal aim is to propose a proper probabilistic model for its distribution. 
The article starts with some preliminary results concerning stochastic processes. Next, 
an approximate analytic solution of the considered problem that was received in literature 
is presented. It is known that the resulting probability distribution of the passage time 
manifests some important shortcomings. Thus it is important to find a reasonable 
alternative. It is argued here that the beta Moyal probability distribution can be a good 
candidate for approximation of the theoretical distribution in various interesting situations. 
In this paper,  two different problems connected with CLS translocation are considered. 
For both problems the theoretical distributions are known from literature and in both 
situations the beta Moyal approximations turn out to be very satisfactory. 
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1. Introduction: Formal stochastic description of the translocation time 

Translocation of the chain-like structures (CLS) through the pore in membrane 
occurs in many fields of science and it is widely described in literature (e.g. [1-5]). 
This phenomenon plays a key role, inter alia, in: RNA and DNA sequencing 
technique, transport of the molecules across membranes in cells, phage infection, 
bacterial conjugation, gene therapy, and many others. One of the principal research 
tasks is to study the probability distribution of the CLS passage time. 

The translocation through the pore phenomenon can be considered as the 
Markov process. This class of stochastic processes plays a very important role in 
description of numerous different physical phenomena [6]. Any stochastic process 
is the process which is described formally as a directed set of random variables 
{Xt}t∈T, where t ∈T may be interpreted as the time (continuous if T is uncountable, 
or a discrete one if T is at most countable). The stochastic process is called 
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a Markov one, when for any t ∈T, its next  state - at time t +1 or t t+ ∆  - depends 
solely on its current state Xt. Thus such processes are generally defined  by some 
initial conditions and the transition rules. Consequently, to define any Markov 
process, it is sufficient to know two probability functions: 0( , )P x t  (initial probability 

distribution), ( , | ', ')P x t x t , 't t>  (transition probability). These functions satisfy 

the following equations: 

 2 2 1 2 2 1 1 1 1( , ) ( , | , ) ( , )P x t dx P x t x t P x t= ∫   (1) 

and 

 3 3 1 1 2 3 3 2 2 2 2 1 1 1 2 3( , | , ) ( , | , ) ( , | , ),         .P x t x t dx P x t x t P x t x t t t t= < <∫   (2) 

Formula (2) is known as the integral Chapman-Kolmogorov equation. 
Under appropriate assumptions (see [6]) from the integral Chapman-Kolmogorov 

equation one can obtain the differential Chapman-Kolmogorov equation and its 
particular variant - the Fokker-Planck equation which describes the diffusion 
with drift: 
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In paper [2] the equation (3) is proposed as a macroscopic description of the 
CLS translocation process. This description is valid under some assumptions about 
the considered phenomenon. First, it is assumed that the CLS passes through 
the pore in the membrane. Next, it is assumed that the pore diameter is comparable 
to the size of monomers of the CLS in this sense, that no more than one chain can 
fit in the pore at the same time. In [2] it is also argued that, in the presence of 
a force driving the CLS through the pore, the system is effectively one-dimensional. 
Let ( , )P x t  denotes the probability that a part x  of the CLS length has passed through 

the pore at time t . The variable x  is defined in the following way: assuming that 
CLS has length L, then 0x =  when the first segment of CLS reached the pore and 
x L=  when all segments of the structure reached the other side of the membrane. 
Factors ν and D in (3) are, respectively, a drift coefficient and an effective diffusion 
coefficient. The parameter ν  is nonzero when the external driving force influences 
the structure motion.  All microscopic details are subsumed in parameters ν and D. 
It is also convenient to consider the related parameter, the so-called diffusive 
length ld defined as: /dl D ν= . 

For fixed ν , D  and with absorbing boundary conditions ( ) ( )0 0P P L= = , the 

solution of equation (3) on the interval [0, ]L  gives a distribution of the passage time. 

Based on the approximate solution found in [2], the probability density function 
( )tψ  of the passage time in the considered case is given by the formula: 
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where, as previously, L  is the length of CLS, dl  is the diffusive length, ν  is 
the drift coefficient. Interesting details concerning the solution method can be 
found in the Appendix of the paper [2]. Simulations of other probability distribu-
tions were considered e.g. in [7]. 

2. The beta Moyal approximation of the passage time distribution 

It is worth noticing that expression (4) is not valid for sufficiently large t, 
because for ts large enough, the function ( )tψ  becomes negative. Thus it is 
an important task to find a proper probability density function (pdf) which could be 
an alternative to (4). Such a pdf should differ as little as possible from ψ, yet it 
should satisfy the usual conditions characterising any pdf, especially it must be 
nonnegative for all t > 0. Following some ideas from literature, see [8], it seems 
reasonable to approximate a function given by equation (4) with probability density 
functions belonging to the beta Moyal family (which is widely discussed, e.g. 
in [9]). These density functions are given by the following expression: 
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 (5) 

where ( , ) ( ) ( ) / ( )B c d c d c d= Γ Γ Γ +  is the beta function, Γ is the Euler’s gamma 
function, ( , )tγ α  is the incomplete gamma function, a−∞ < < ∞  is the location 
parameter, 0b >  is the scale parameter and , 0c d >  are the shape parameters. 
When 1c d= = , equation (5) reduces to the Moyal density function that was 
considered in this context in [8]. Since the underlying theoretical distribution of the 
translocation time is a three-parametric function, and the beta Moyal probability 
distribution depends on four parameters, while modeling ψ , it can be assumed 
that ( )d f c= . 

As the criterion for the best fit of distributions the following integral is used: 

 2( ( , , ,2 , ) ( , , , ))d

I

p a b c c t L l t dtψ ν−∫   (6) 
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where interval I 0,
2 d

L
l

 =   
. Obviously, the values of the parameters appearing in 

ψ  are exactly the same as in [2]. The aim of our research is to identify such values 

of , ,a b c  in (5) for which above criterion takes on the least value. All parameters 
were looked for in the interval [0.1,3]  (with step 0.01s = ). In this particular case 

it was assumed that ( ) 2f c c= . The least value of the integral given by (6) was 

obtained for 0.33a = , 0.09b = , 0.51c = . It was equal to 0.00147, so the area 
between both density functions was very small, meaning that the approximation 
is really good. Moreover, the expected values and the standard deviations of both 
distributions have almost the same values (they were equal after rounding to one 
decimal place). 
 

 
Fig. 1. The probability density functions p(t) of scaled translocation time t. Solid line: 

the beta Moyal distribution with parameters a = 0.33, b = 0.09, c = 0.51; 
dash-dotted line: distribution ψ  in equation (7). The dashed curve represents a normal 

distribution. All presented distributions have the same means (µ = 0.6) 
and standard deviations (σ = 0.3), which is in agreement with the Figure 2 in [5] 

In fact, Figure 1 shows noticeable agreement between the probability density 
function of the three-parametric beta Moyal probability distribution (with the iden-
tified parameters) and the probability density function ψ  which has been derived 

from the coarse-grained equation for chain-like structures’ translocation in [2]. 
A normal probability distribution (suggested by some early works, see [2, 8]) with 
the same expected value and standard deviation is also included for comparison. 

In the remaining part of this section, the beta Moyal approximation of the theo-
retical translocation time curves obtained in [4] is presented. In [4] the theoretical 
translocation into and out of an ellipsoidal cavity is studied. It is assumed that 
the CLS is translocated through the narrow pore in the membrane between an ellip-
soidal cavity and a semi-infinite space on one side of the barrier. The diameter of 
the pore is comparable to the size of the segments forming the CLS. So, similarly 
as in the previous example, just one chain segment can be placed in the pore at 
a given time. With the help of the Fokker-Planck formalism, the authors of [4] 
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were able to calculate translocation times pdfs for both chain insertion and ejection, 
for more details see [4]. In our studies, the results obtained in [4] are used to verify 
whether or not a beta Moyal distribution can be a good probabilistic model of the 
passage time in this, a bit different, case. For this purpose the translocation time 
curves presented in [4] are analysed (Fig. 6b in there). To obtain the validation data 
set consisting of the “theoretical” values of the pdf, the coordinates of different 
points lying on the graphs were read out. Consequently, to obtain the best beta 
Moyal approximation of the theoretical curve, the following discrete version of the 
criterion (6) is considered: 

 2

1

( ( , , , , ) ) ,
2

n

i i

i

c
p a b c x y

=

−∑   (7) 

where ( , )i ix y  are coordinates of points read out from the curve presented in [4], 

and n  is the number of points (in this case 420n = ). 
Parameters which minimize the above criterion were searched for in the interval 

[0.1,250]  (with step 0.1s = ). As in the previous problem, a three-parametric 

distribution was considered. Thus a parameter d  from equation (5) is again related 
with c . This time it is assumed that f(c) = c/2. The least value of criterion (7) 

is 63.9122 10−⋅  and it is achieved for a = 225.2, b = 53.8, c = 2.05. 
In Figure 2, one can see that the “curve” consisting of points read out from 

the Figure 6b in [4] is nearly the same as the beta Moyal density function with 
the parameters found in our studies. Therefore, it can be concluded that the three-
parametric beta Moyal probability distribution is a good approximation for 
theoretical distribution of the CLS passage times in both problems considered here. 

 

 
Fig. 2. The probability density functions p(t) of translocation time t. Solid line: 

the beta Moyal distribution with parameters a = 225.2, b = 53.8, c = 2.05; 
points: data obtained from the Figure 6b in [4] 
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3. Final remarks 

A major subject of the presented research is the translocation of the CLS 
through the pore in the membrane. The main conclusion is that the theoretical 
distribution of the passage time can be well approximated with the three-parametric 
beta Moyal probability distribution. It is important, because the theoretical 
probability density function proposed in the literature is not valid for large t (it 
takes on negative values) while the beta Moyal density function defines a proper 
probability distribution. 

 There are several future research directions. First, similar research based on 
experimental data connected with polymer translocations will be performed. Such 
data can be found for example in [1, 3].  

Another possible area of future studies is connected with the choice of the 
function f that relates two parameters, c and d, of the beta Moyal distribution. 
In this paper it was assumed that f is linear in both cases. However, other functions 
may also be considered and the resulting beta Moyal approximation may appear to 
be even better. 

Yet another subject of future research is to examine data obtained via Monte 
Carlo studies. In these studies the algorithm described in [8] will be used to analyse 
the CLS passage times under a number of different assumptions concerning 
the topology of the pore, its relation to monomers’ size, the external force driving 
the CLS, the algorithm parameters, etc. An important part of this research will be 
the development of models that relate the algorithm parameters with the parameters 
of beta-Moyal distribution of the translocation time. 
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