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1. Introduction 

The Witt ring of quadratic forms with coefficients in a field is a fundamental 
notion in the theory of quadratic forms. Since 1937, when E. Witt introduced the 
notion in [1], Witt rings have been the subject of much research and their structure 
and properties are described in detail in numerous articles and books. It turns out 
that the structure and properties of Witt ring �(�) depend strongly on the field � 
of coefficients of quadratic forms. Therefore the problem of classification of Witt 
rings with respect to the fields of their coefficients was one of the most interesting 
in the theory of quadratic forms. Two Witt rings �(�) and ���� over the fields � 
and � respectively are called strong isomorphic (and the fields � and � are called 
Witt equivalent), if there exists a ring isomorphism �:���� → �(�) which pre-
serves the dimension of nonisotropic forms representing Witt classes, i.e. such that ��〈�〉� = 〈
〉. The problem of classification of fields with respect to Witt equiva-
lence (and the classification of Witt rings) has been extensively studied since the 
early 70s of the twentieth century and the review of the results was presented in the 
book [2]. 

In this article we consider the problem of research of strong automorphisms of 
the Witt ring, that is strong isomorphisms, where � = �. The diversity of Witt 
rings causes that there was not found one universal description of automorphisms 
of any Witt ring, but the groups of strong automorphisms are described for many 
broad classes of Witt rings (cf. [3-10]). In the paper we present the description of 
the groups of strong automorphisms of Witt rings of local fields. 

We refer to the concept of an abstract Witt ring defined by Marshall in [11] as 

an abstract equivalent of well-known Witt rings of quadratic forms, which have the 

same algebraic properties as the original object. 
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Definition 1.1. Following Marshall, a Witt ring is a pair � = ��,��, where � is 

a commutative ring with unity 1 and � is a subgroup of the multiplicative group �∗ 

which has exponent 2 and contains distinguished element −1 (where, as usual in 

a ring –  denotes the additive inverse of ). Furthermore, the following axioms 

hold. 

W1: � generates � additively.  

W 2: The following Arason-Pfister property holds for � = 1 and � = 2: 

If  = �� + �� + ⋯ + �� ∈ ��, where � denotes the fundamental ideal of � gener-

ated by elements  = � + 
, �,
 ∈ �, � < 2�, then  = 0. 

W 3: If �� + �� + ⋯ + �� = 
� + 
� + ⋯ + 
� and � ≥ 3, then ∃�,�,��,…,��∈�
 such 

that �� + ⋯ + �� = � + �	 + ⋯ + ��, �� + � = 
� + 
 (and, hence, 
� + ⋯ +
+	
� = 
 + �	 + ⋯ + ��). 

We will say that � is a (strong) isomorphism of Witt rings �� = (��,��) and �� = (��,��) if �:�� → �� is a ring isomorphism such that ����� = ��.  
A strong automorphism of Witt ring � is a strong isomorphism of � onto itself. 

Since we will use quaternionic structures, below we recall the definition. 

Definition 1.2. Let G be a group of exponent 2, i.e. �� = 1 for all � ∈ � with dis-

tinguished element −1 ∈ � and let us denote –� = −1 ⋅ �. Let � be the set with 

distinguished element �	and let �:� × � → � be a surjective map. The triplet 

(�,�,�) is called a quaternionic structure if for every �,
, �,� ∈ � the map � ful-
fills: ��:	���,
� = �(
,�)	 ��:���, −�� = � �	:���,
� = ���, �� ⇒ ���,
�� = � �
 If ���, 
� = �(�,�), then there exists such � ∈ � that ���,
� = �(�, �) and ���,�� = �(�, �). 

Two quaternionic structures ���,��,��� and ���,��,��� are isomorphic if there 

exists a group isomorphism �:�� → �� such that ��−1� = −1 and ����,
� =

= �� ⇒ �������,��
�� = �� for all �,
 ∈ ��. By automorphism of a quaternionic 

structure (�,�, �) we understand any isomorphism �: ��,�,�� → (�,�,�). 
Now we shall present some definitions of notions of the theory of quadratic 

forms, which we will use in this paper. 

Let (�,�,�) be a quaternionic structure. A (quadratic) form of dimension � ≥ 1 over � is n-tuple � = (��, … ,��), where ��, … ,�� ∈ �. A form � of dimen-

sion 2 is called binary form. Two forms of dimension � are called equivalent  
(or isometric) if: 

(1) � = 1, ��� ≅ �
� ⟺ � = 
 
(2) 2=n , ��,
� ≅ ��,�� ⟺ �
 = ��  and  ���,
� = �(�,�) 

(3) 2>n ,  ���, … , ��� ≅ �
�, … , 
�� ⟺ ∃�,
, �	, … , �� ∈ � such that  ���, … ,��� ≅ ��, �	, … , ���, ���,�� ≅ �
�,
� and �
�, … ,�
�� ≅ �
, �	, … , ���. 
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We say that form f represents element � ∈ � if there exist ��, … ,�� ∈ �, such 

that � ≅ (�,��, …��). We denote the set of all elements represented by form f 

(value set of the form f) by ����. We have � ≅ � ⇒ ���� = �(�). Notice that 

there exists a formula that expresses the set of elements represented by binary form �1,�� by means of quaternionic mapping, namely 
 ∈ ��1,�� ⟺ ���,
� = � 

([11], p.74). 

Let � = (�,�) be an abstract Witt ring. According to  [11, Theorem 4.5] Witt 

rings are in one-to-one correspondence with quaternionic structures. The natural 

one-to-one correspondence means that for every Witt ring � = ��,�� there exists 
a quaternionic structure (�,�,�) associated to it and conversely for given quater-
nionic structure (�,�,�) one can construct related Witt ring � = ��,��. This fact 

provides to use quaternionic structures in order to study properties of Witt rings 

when it is convenient. Let (�,�,�) denote the quaternionic structure associated to 
Witt ring � = (�,�). According to ([12, Theorem 2.1]  the groups of strong  

automorphisms of Witt rings are isomorphic to the groups of all automorphisms of  

associated quaternionic structures (compare [11, Chapter 4, §1]).  

Let � = ��,�� be a Witt ring and let (�,�,�) be the quaternionic structure  
associated to it. Then two forms ���, … ,��� and �
�, … ,
�� are equivalent if  �� + �� + ⋯ + �� = 
� + 
� + ⋯ + 
� in � and � = �. In many situations there 

is more convenient to use forms instead elements of ring �. 

Definition 1.3. We will say that quaternionic structure (�,�,�) is of local type if 

the group � is finite and |�(1, −�)| =
�

�
|�| for all 1 ≠ � ∈ �. The Witt ring 

� = (�,�) associated to quaternionic structure (�,�,�) of  local type will be 

called a Witt ring of local type. 

Witt rings of local type are realized by local fields, especially by p-adic fields 

ℚ� and their finite extensions. More information about local fields, quadratic forms 

with coefficients in local fields and about structures of Witt rings of local type the 

reader can find in books [11] and [13-15]. 

It follows that in the case of Witt ring � = (�,�) of local type we can investi-

gate automorphisms of associated quarternionic structure (�,�, �) instead of 

strong automorphisms of Witt ring �. 

In this paper we present a complete description of groups of strong automor-

phisms of all kinds of Witt rings of local type. We use one-to-one correspondence 

between strong automorphisms of Witt rings of local type and isometries of biline-

ar spaces over two-element field  � created by quaternionic structures associated to 

that Witt rings. Quaternionic structures corresponding to Witt rings of local type 

create three different types of bilinear spaces over  � with respect to properties of 

quaternionic map � treated as a bilinear functional. In each of these cases we give 

description of group of isometries of suitable bilinear space, which is equivalent 

that we get description of groups of strong automorphisms of Witt rings of local 

type. 
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Remark 1.4. According to above definition the Witt ring (ℤ, {1, −1}), which is 

isomorphic to the Witt ring �(ℝ) of  the field of real numbers is a Witt ring of  

local type, since �(1,1) = {1}. 

2. Quaternionic structures associated to Witt rings of local type  

as bilinear spaces 

If (�,�,�) is a quaternionic structure of a local type, then |�| = 2� and the 

value set of quaternionic map � can be viewed as two-element field  �. It follows 

from axioms of quaternionic structure that the quaternionic map � is bilinear (cf. 
[11, Chapter 2, §1]), hence � is nonsingular bilinear functional in vector space � over the field  � ([11, Chapter 5, §3]). Therefore automorphisms of quaternionic 

structure associated to a Witt ring of local type can be treated as isometries of 

nonsingular bilinear space over  � of dimension �, i.e. vector space with nonsingu-

lar bilinear functional �.  
Although the group � has multiplicative notation, from now in the paper it will 

be more convenient to use additive operation in � in order to emphasize the func-

tion of � as a bilinear space. Let ! be a finitely generated bilinear space over the 

two-element field  � and let " ∶ ! × ! →  � be a symmetrical and nonsingular  

bilinear functional. The pair (!,") is a nonsingular bilinear space. If # is  

a subspace of !, then  the restriction  " ↾× we denote by ". Let rad	! denote 

the radical of bilinear space ! defined as rad	! = $% ∈ !:"�%,&� = 0	for	all	& ∈!' (compare [2]).We shall prove that (!, �,") is a quaternionic structure of local 
type (see Corollary 2.2).  

 

Theorem 2.1. Let (!,") be a nonsingular bilinear space over the field  � and let 

dim! = �. Then: 
1. # = {& ∈ ! ∶ "(&,&) = 0} is a subspace of  ! and  dim# ≥ 	� − 1. 
2. There exists exactly one element () ∈ ! such that 
 "�(,() + (� = 0 (1) 

for all ( ∈ !. 
3. #� = *+�(()). 
4. For every isometry  �  of space  (!,")  it holds  �(#) = #  and  �(()) = (). 
 

Proof: 1. We define a quadratic map �:! →  � by ��(� = "�(,(� (the quadratic 
form determined  by a functional "). Take 

���� + ��� = ����, ��� + ����, ��� + ����, ��� + ����, ��� = ����� + �(��). 

Homogeneity of the map � is obvious in view of the field structure, hence the map � is a linear functional. 
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Let ( ∈ ker�, this is to say �(() = 0, and that is equivalent to "((,() = 0 or # = ker�. On the other hand, ker� is a subspace of the vector space ! and 

dim! 	= dim ker� + dim im	�	 holds. There are two possible cases: 

a) im	� = {0}. Then  # = ker� = !,  hence dim# 	= �  and the functional " is 

alternating. 

b) im	� =  �. Then  dim im	� = 1  and it follows  dim# = dim ker� = � − 1. 

2 and 3. We start from showing the uniqueness of element () holding (1). Suppose 

that the elements &) ,() ∈ ! fulfill "�(,&) + (� = 0 and "�(,() + (� = 0 for every ( ∈ !. Then 

"�(,&) + ()� = "�(, �&) + (� + (() + ()� = "�(,&) + (� + "�(,() + (� = 0 

for every ( ∈ !. Since the functional " is nonsingular, it follows that &) + () = 0, 

thus &) = (). 
The proof of existence requires a few cases. If dim# = �, then " is an alternat-

ing functional, thus () = 0 fulfills (1). Since functional " is nonsingular, therefore  #� = 0 = lin{0}. 
Suppose that dim# = � − 1. We assume that () is a nonzero element in sub-

space #�. Of course lin�()� = #�, since  dim#� 	= 1 (by the dimension theorem 

5.2.1 in [2]). Notice that if & ∈ #, then "�&,() + &� = 	"�&,()� + "�&,&� = 
= 0 + 0 = 0. 

If the bilinear space (#,"), where " denotes the restriction of functional " to 

the subspace #, is nonsingular, then by the orthogonal complement theorem (cf. [2, 

Theorem 5.2.2]) we have ! = # ⊕ 	#�. Therefore, if ( ∈ !\#, then there exists  & ∈ # such that ( = () + &, and it follows "�(,() + (� = "�() + &, () + () + &� = 
= "�() + &,&� = 0. 

If the bilinear space (#,") is singular, then #� ⊆ #. By the fact that the func-

tional " is nonsingular on ! it follows that (#�)� = #, that means "((,()) = 1 for 

all ( ∈ ! ∖ #. Therefore "�(,() + (� = "�(,()� + "�(,(� = 1 + 1 = 0. Hence in 

both cases () fulfills (1). 
4. Let  ()  be the element holding (1). If � is an isometry of bilinear space (!,"), 
then  "(��(�,��()� + ��(�) = 0 for all ( ∈ !. It shows that �(()) also fulfills (1), 
hence by the uniqueness of element () it follows that �(()) = (). � 

 

In the sequel we assume that the bilinear space (!,") is nonsingular, the set of 
all isotropic vectors in ! we will denote by #, and the unique element fulfilling (1) 

will be denoted by (). 
Recall that for every ( ∈ ! the mapping "�(,⋅�:! →  � such that � → "((, �) 

for all � ∈ ! is a linear functional. If ( ≠ 0, then ker"�(,⋅� = {� ∈ !:"�(, �� = 
= 0} is a subspace of ! with dimension dim! − 1. Of course "�0,⋅� is zero  
functional. 
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Corollary 2.2. If  (!,") is nonsingular bilinear space over two-element field  � 

and dim! < ∞, then (!, �,") is a quaternionic structure of local type and 
Aut(!, �,") = �,-�(!,") where �,-�(!,") denotes the group of all isometries 

of bilinear space (!,"). 

Proof: First we shall show that the axioms �� − �
	of the definition of quaternionic 
structure are fulfilled. 

The condition �� (symmetry) is fulfilled, since the bilinear functional " is 

symmetrical. 

The condition �� follows by the theorem 2.1 §2. The vector () is the distin-
guished element of the group ! in the quaternionic structure (!, �,"). 

In order to show the condition �	 (weak bilinearity) it suffices to notice that by 

bilinearity of functional " the equality "(�,.) = "(�, ,) holds if and only if "(�,. + ,) 	= 	0 for all �,., , ∈ ! . 

It remains to check the condition �
 (linkage): if "(&,.) 	= 	"(%, ,), then there 
exists an element � ∈ ! such that "(&,.) 	= 	"(&, �) and "(%, ,) 	= 	"(%, �). Let 

us consider two cases. If "�&,.� = 	"�%, ,� = 0, then it suffices to set � = 0.  

If "�&,.� = 	"�%, ,� = 1, then vectors &,% are nonzero. Let us denote  / = ker"(&,⋅) and �	 = ker"(%,⋅). By nonsingularity of functional " it follows 

that |/| = |�| = 2���. Therefore . ∉ / and , ∉ �, hence 0 ∉ (. + /) ∪ (, +
+�). It follows that |�. + /� ∩ �, + ��| = |�. + /�| + |, + �| − |�. + /� ∪�, + ��| ≥ 2 ⋅ 2��� − �2� − 1� = 1. This shows that there exists � ∈ (. + /) ∩
(, + �). With such a choice of element � there exist 1� ∈ / and 1� ∈ � such that 

 � = .	 + 1� and � = , + 1�. Then "�&, �� = 	"�&,. + 1�� = "�&,.� +	+	"�&, 1�� = "�&,.�. Similarly "�%, �� = "�%, , + 1�� = "�%, ,�, hence �
 

holds, which finishes the proof that (!, �,") is a quaternionic structure. 
According to [1] ���,
� = 	0 ⟺ 1 − � = 
�1 − �� ⟺ 
 ∈ �(1 − �) for  

every quaternionic structure (�,�,�) (compare [1, Ch. 4 §3, p. 74]). It follows that 

the value set of binary form (0,() + () equals to  ker"((,⋅), therefore for all ( ≠ 0 

it has 2��� elements. This shows that (!, �,") is the quaternionic structure of lo-
cal type.� 

3. Groups of isometries of bilinear spaces created by quaternionic structures 

of local type  

In theorem below we use the notion of a symplectic group, i.e. the group of 

isometries of nonsingular alternating space. One can find more about properties of 

symplectic groups over finite fields in the book by E. Artin [16].  

Theorem 3.1. Suppose that (!, �,") is a quaternionic structure and the dimen-

sion of  ! as a vector space over   � equals to dim! = �.  
1. If � is odd number, then the functional " is not alternating and 
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2&1�!, �,"� ≅ 34(� − 1, �) 

2. If � is an even number and the functional " is alternating, then 
2&1�!, �,"� ≅ 34(�, �) 

3. If � is an odd number and the functional " is not alternating then the group 2&1�!, �,"� is isomorphic to the group (# × 34(� − 2, �),∗), with operation ∗ 
defined by 

�&�, 5̅�� ∗ �&�, 5̅�� = �%, 5̅�5̅��, 
where % is an element of subspace # determined by &�,&� and 5̅� (see (2)). 
Proof: 1. If the dimension of the space is odd and the functional is nonsingular, 

then the functional cannot be alternating, since by [2, Corollary 6.2.3] the dimen-

sion is the only invariant needed to classify nonsingular alternating spaces up to 

isometry. Therefore dim# = � − 1 and the functional " is alternating. Suppose 

that the functional " is singular. Then rad	# = #� ∩ # is not trivial, thus 

1 ≤ dim rad	# ≤ dim#� = 1. By [2, Theorem 5.3.1] # = #� ⊕ rad	# for some 

nonsingular subspace #� contained in #. This is a contradiction, since #� is 

nonsingular alternating space with odd dimension. Therefore # is alternating 

nonsingular space and !	 = # ⊕ 	#� and by theorem 2.1 we have #� = {0,()}. 
By the corollary 2.2 the group of all automorphisms of a quaternionic structure 

is isomorphic to the group of isometries of bilinear space (!,"). If � is an isometry 

of the space (!,"), then by theorem 2.1 §4 we have �(#) = # for the subspace #, 

hence the restriction � ↾ is an isometry of space (#,"). Therefore we get the 

map Izom�!,"� → Izom�#,"� ≅ 34(� − 1, �). It is obvious that such a map is 

a group homomorphism. Since the subspace (#,") is nonsingular, then  !	 = 	lin(()) ⊕ #. Every element ( ∈ ! can be expressed in form ( = �() + &, 

where � ∈  � and & ∈ #. If � ↾ is an identity map, then �(�() + &) = ��(()) + 
+�(&) = (, thus � is identity map, hence the mapping is a monomorphism. More-

over, every isometry 5 ∈ Izom(#,") can be uniquely extended to the isometry of 

the space �!,"� defined by �(�() + &) = �() + 5(&). Therefore 2&1�!, �,"� = 
= Izom�!,"� ≅ Izom(#,") = 	34(� − 1, �). 
2. It follows by corollary 2.2. 

3. If � is an even number and the functional " is not alternating, then similarly as 

in the first case dim# = � − 1, i.e. the subspace # has odd dimension, thus it is 

singular. By theorem 2.1 we have  () ∈ #� ⊆ #. Moreover, 	�#��� = #  hence  "((,()) = 1 for all ( ∈ ! ∖ #. If  ( ∈ ! ∖ #  and � = lin((,()), then the matrix of 

bilinear functional "� ∶ 	� × � →  � (which is the restriction of " to the sub-

space W) relative to the basis ((,()) has the following form �1 0

0 1
�, hence the sub-

space � is nonsingular. 
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Consider the quotient space #7 = #/#� and the canonical epimorphism  8:	# → #7 defined by 8(&) = & + #�. Notice that & + #� = {&,& + ()}. Since "(&� + ��(),&� + ��()) = "(&�,&�) for all &�,&� ∈ # and ��,�� ∈  �, hence the 

alternating bilinear functional " induces the natural alternating functional  "̅:#7 × #7 →  � defined by "̅�&� + #�,&� + #�� = "(&�,&�) for all &�,&� ∈ #. 

Similarly, every isometry 5 of the space # uniquely induces the isometry 5̅ of  
bilinear space (#7, "̅) defined by 5̅�& + #�� = 5̅(&) + #�. Of course 5̅ ∈ 

Izom�#7, "̅� ≅ 34(� − 2, �). For every subspace � ⊆ # such that # = #� ⊕ � 

we have � ∩ ker 8 = 	� ∩ #� = {0}, hence the restriction of canonical epimor-

phism 8 ↾�∶ 	� → #7 is an isometry of bilinear spaces. 

Now we shall show that with arbitrary element (� ∈ ! ∖ # there exists a bijec-

tion Φ between the set of all isometries of space �!,"� and the set  # × Izom�#7, "̅�. For an isometry � of the space �!,"� we assume that  & = ��(�� + (�. Since # is a subgroup of the group ! with index 2 and ��(��,(� ∉ # hence & ∈ #. Moreover, we have �(#) = #, thus 5 = � ↾ is an 

isometry of alternating space #/rad	#. The map 5 uniquely determines an isometry 

5̅ of space �#7, "̅�. It is easy to show that the mapping � → 5̅ is a homomorphism of 

the groups Izom�!,"� and 34�#7, "̅�. In this way we define Φ�σ� = (u, τ9). 

Conversely for each pair �u, τ9� ∈ U × Izom�#7, "̅� we will define an isometry � 

in the space ! such that Φ��� = �&, 5̅�. Since the subspace  lin�(�,()�  is nonsingu-

lar, hence ! = lin�(�,()� ⊕ #�, where #� = lin�(�,()��. Similarly the subspace 

lin�(� + &,()� is nonsingular, hence ! = lin�(� + &,()� ⊕ #��, where #�� = 
= lin�(� + &,()��. The restrictions 8� = 8 ↾�  and 8�� = 8 ↾��  of the canonical 

map 8 are isomorphisms of spaces. Therefore the map 5 = 8′′�� ∘ 5̅ ∘ 8′ is an 
isometry mapping from the subspace #′ to #′′. It is easy to check that there exists 
exactly one isometry ::	lin�(�,()� → lin((� + &,()) such that :((�) = (� + &. 

Every vector of ! can be uniquely expressed in the form ( = 1 + &, where 1 ∈ lin�(�,()� and & ∈ #′, hence the linear map � can be uniquely defined by �(() = :(1) + 5(&). It suffices to show that � is an isometry. Let us consider (� = 1� + &�	 and (� = 1� + &�, where 1�, 1� ∈ lin�(�,()� and &�,&� ∈ #′ hence "(1� ,&�) = 0 and "(:(1�), 5(&�)) = 0 for +, ; ∈ {1,2}. We calculate 

"���(��,��(��� = "�:�1�� + 5�&��,:�1�� + 5�&��� = "�:�1��,:�1��� +

+"�5�&��, 5�&��� = "�1�, 1�� + "�&�,&�� = "�1� + &�, 1� + &�� = "((�,(�).  

It is easy to check that Φ(�) = (&, 5̅). 

In order to define an operation in # × Izom�#7, "̅� let us consider two pairs 

(&�, 5̅�), (&�, 5̅�) and corresponding isometries ��	 and ��, respectively. Then 

Φ��� ∘ ��� = (%, 5̅� ∘ 5̅�), where % = �� ∘ ���(�� + (� = ���(� + &�� + (� = 
= ���(�) + ��(&�� + (� = (� + &� + ���&�� + (� = &� + ���&��. Assume that 

&� ∈ #� = lin�(�,()��. Then % = &� + ��(&�) = &� + 8����5̅�8′(&�). If &� ∉ #′, 
then there exists an element &�� ∈ #′ such that &� = &�� + () and then % = 	 &� +

+	���&�� = &� + ���&�� + ()� = &� + ���&�� � + () = 	 &� + 8����5̅�8��&�� + (). 
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Finally we get 

% = <&� + 8����5̅�8��&��													if	&� ∈ #′

&� + 8����5̅�8��&�� + ()	,			if	&� ∉ #′
   (2) 

Notice, that in both cases % depends alike on 5̅� and &� and &�. � 
Corollary 3.2. Let (!, �,") be a quaternionic structure and let dim��

! = �. 
Then: 

1. If � is odd number, then  

|2&1�!, �,"�| = 2������/
 ⋅ = (2�� − 1).

(���)/�

���

 

2. If � is even number and the functional " is alternating, then 

|2&1�!, �,"�| = 2��/
 ⋅ =(2�� − 1).

�/�

���

 

3. If � is odd number and the functional " is not alternating, then  

|2&1�!, �,"�| = 2��/
 ⋅ = (2�� − 1).

(���)/�

���

 

Proof: In cases 1. and 2. the groups of automorphisms are isomorphic to a suitable 

symplectic group. The order of those groups can be calculated by using the formula 

contained in [16, p. 201]. 

3. By the previous theorem it follows that |2&1�!, �,"�| = |#| ⋅ |34�� −

−2, ��| = 2��� ⋅ 2������/
 ⋅ 	∏ (2�� − 1) = 2��/
 ⋅ ∏ (2�� − 1).
(���)/�

���

(���)/�

���  � 

4. Groups of strong automorphisms of Witt rings of �-adic fields 

Using facts proved above we shall describe the groups of all strong automor-

phisms for Witt rings of local type with the most simple structure. 

The simplest Witt ring of a local type is a ring isomorphic to the ring ℤ of all  

integers. The Witt ring ℤ is realized by the field ℝ of real numbers. In this case the 

group � ≅ ℝ∗/ℝ∗� = {1, −1} and the only strong automorphism of �(ℝ) is the 
identity map. 

Let us consider now the Witt rings of local type realized by the fields ℚ� of  4-adic numbers. More information about fields of 4-adic numbers, their Witt rings 
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and associated quaternionic structures one can find in [11], [13] and [14]. We will 

consider three possible cases. 

1. Let � be the Witt ring realized by the 2-adic field ℚ�. The abstract Witt ring 

isomorphic to �(ℚ�) has  an 8-element group of square classes � = ℚ�
∗/ℚ�

∗� (see 

[14] or [11] where this abstract Witt ring is denoted by ?	). In this case the quater-
nionic structure associated with Witt ring can be viewed as bilinear space over  � 

with dimension � = 3, the suitable functional is not alternating and according to 

theorem 3.1 §1 we get 2&1���ℚ��� ≅ 34�2, ��. Scrupulous calculation shows 

that 2&1���ℚ��� is isomorphic to the symmetric group 3(3) (group of all permu-

tations of 3-element set). 

 

2. Let us consider Witt ring � realized by any 4-adic field ℚ�, where  

4 ≡ 1	�mod	4�, for example ℚ�. It is isomorphic to the ring ℤ/2ℤ[@
] of the cyclic 
4-element group with coefficients in 2-element ring ℤ/2ℤ (see [11]). The group of 

square classes of the field ℚ� has 4 elements: ℚ�
∗ /ℚ�

∗� = {1,4,&,&4} ([14, Theo-

rem 2.2, p. 152], compare [11, Theorem 3.18]). The suitable bilinear space ! over 

 � is alternating therefore by theorem 3.1 §2 we have 2&1 A��ℚ��B ≅ 34�2, �� 
as in the previous case. 

 

3. Let � be a Witt ring of local type realized by any 4-adic field ℚ�, where  

4 ≡ 3	�mod	4�, for example ℚ	. It is isomorphic to the group ring ℤ/4ℤC@�D of the 
cyclic 2-element group with coefficients in 4-element ring ℤ/4ℤ (see [11]). 

In this case 1 ≠ −1 ∈ ℚ�
∗ /ℚ�

∗�, hence ℚ�
∗ /ℚ�

∗� = $1, −1,4, −4' ([14], Chapter 

VI, Theorem 2.2). We have dim! = 2 and the suitable functional is not alternat-

ing, hence we are in a position described in theorem 3.1 §3. Since  

dim�#,"� = � − 1 = 1 and assume that () = −1, hence # = $1, −1'. Therefore 

we have a group isomorphism # ≅ @� and (� = 4. In this case, the second factor 
of the Cartesian product vanishes, thus 2&1 A��ℚ��B ≅ @� that is to say 

2&1 A��ℚ��B where 4 ≡ 3	�mod	4� is the 2-element cyclic group. 

 

Witt rings of local type with more complex structure are realized by extensions 

of the field of 2-adic numbers ℚ� (compare [11, Chapter V, §3]). Let � denote the 

extension degree of the field � over ℚ�.Then the cardinality of the group of square 

classes �∗/�∗� equals 2� + 2 [cf. [11]). If the extension degree � is an odd num-

ber, then there exists exactly one Witt ring of local type with the group of square 

classes with cardinality 2� + 2. On the other hand if � is even, there are two non-

isomorphic Witt rings of local type depending on that whether √−1 ∈ F or not.  

In the first case we have −1 = 1 and in the second case −1 ≠ 1. The exact struc-

ture of these Witt rings is described in [11, Prop. 5.6]. 
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5. Consequences and future works 

Witt rings of local type create an important family of finitely generated Witt 

rings. Namely, we know that every finitely generated Witt ring can be expressed in 

terms of  ℤ/2ℤ and so called basic indecomposable Witt rings using the operations 

of group ring formation and direct products (see [11, Theorem 5.23]). Next we  

notice that most known basic indecomposables are Witt rings of local type (cf. [11, 

Theorem 5.24]) and we know the description of the groups of strong automor-

phisms of products of Witt rings of local type (cf. [5]) and the description of the 

groups of strong automorphisms of Witt rings which are group rings (cf. [6]). 

These facts make description of groups of strong automorphisms of Witt rings of 

local type very important for investigation of strong automorphisms of other (pos-

sibly all) finitely generated Witt rings. 
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