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Abstract. In this paper a solution of the time-fractional heat conduction problem in a multi-

layer slab is presented. The boundary conditions of the third kind and the perfect contact at 

the interfaces are assumed. A space-time dependent volumetric heat source in the slab and 

time dependent surroundings temperatures are taken into account in the formulation of the 

problem. The solution is obtained in the form of a series expansion with respect to eigen-

functions of an auxiliary problem. A numerical example shows temperature distribution in 

the slab for various values of the order of the Caputo fractional derivative in the heat con-

duction equation. 
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1. Introduction  

The heat conduction in layered slabs governed by a differential equation which 
is derived on the base of Fourier law have been considered by many authors [1-5]. 
An analytical form of exact solutions to such problems can be obtained in the case 
of heat conduction in a layered slab. Temperature distribution in multi-dimensional 
layered bodies in a rectangular coordinate system has been determined by Haji-
Sheikh and Beck in paper [1]. The solution appointed by using the Green’s func-
tion properties was utilized to numerical analysis of the temperature distribution in 
two-layer bodies. The temperature solution of the heat conduction problem for 
a multi-layer slab is presented by Özişik [2]. The solution in the form of a series of 
eigenfunctions was obtained.  

Mathematical models based on generalizations of the Fourier law lead to  
fractional heat conduction. In these models the differential equation of the heat 
conduction includes the time- and/or space-fractional derivatives. The theory of the 
fractional calculus is contained in the books [3-5]. The methods to solutions of the 
fractional differential equations are presented in papers [6-9]. In Huang and Liu [6] 
to solve the Cauchy problem for the time-space fractional diffusion equation,  
temporal Laplace and spatial Fourier transforms have been applied. Demirci and 
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Ozalp [7] use a transformation of the considered fractional differential equation in 
the equivalent fractional Volterra integral equation. Zheng and Wei [8] propose 
a regularization method to solving a Cauchy problem of the time-fractional diffu-
sion equation. To solve the fractional heat equation, Anwar et al. [9] used a double 
Laplace transform. 

The subject of this paper is the time-fractional heat conduction in a multilayer 
slab with boundary conditions of the third kind. The continuity of temperatures and 
the continuity of streams at the interfaces are assumed. The exact solution in the 
form of the series of eigenfunctions is obtained. 

2. Formulation of the problem  

Consider a slab consisting with n -layers which are characterised by thermal 
conductivity 

i
λ  and thermal diffusivity 

i
a . The heat conduction in the i-th layer is 

governed by the time-fractional differential equation 
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where ( ),
i

T x t  and ( ),
i
q x t  is a temperature and a volumetric energy generation in 

the i-th layer, respectively, 
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x
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 and 
i
x  are coordinates specifying surfaces of the  

i-th layer wherein 
0
0x = , α  denotes an order of the Caputo fractional derivative 

with respect to time t. The Caputo derivative of order α  is defined by [3] 
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The functions 
1
T  and 

n
T  satisfy the boundary conditions  
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where 
L
a , 

R
a  are heat transfer coefficients and ( )

L
T t , ( )

R
T t  are surrounding 

temperatures. Moreover, we assume that the temperatures ( ),
i

T x t  satisfy the  

conditions at the interfaces which correspond to the perfect contact of the layers 
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The temperature 
i
T  in the i-th layer for 0t =  is given by 
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The differential equation (1) and the conditions (3)-(7) constitute a complete 
formulation of the fractional heat conduction problem in the slab. A solution of the 
problem is presented in section 3. 

3. Solution of the problem 

The solution to the problem (1)-(7) for temperature ( ),
i
T x t  in the i-th layer, we 

seek in the form of a sum  
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where the functions 1 2
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i i
Φ Φ  satisfy homogeneous differential equations and non-

homogeneous boundary conditions and the functions ( ),
i
x tθ  satisfy non-

homogeneous fractional differential equations and homogeneous boundary condi-
tions.   

The differential equations and boundary conditions we obtain substituting (8) 

into equation (1) and (3)-(7). For the functions , 1,2
p

i
Φ p =  we have 
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where 
,m n

δ  is Kronecker delta. The functions ( ),
i
r tθ  satisfy the non-

homogeneous differential equation 
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and the homogeneous conditions 
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The function 
i
qɶ  in equation (14) is defined by  
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Moreover, by substituting equation (8) into equation (7), we obtain the initial con-
dition in the form 

 ( ) ( ) ( ) ( ) ( ) ( )1 2
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A solution of equation (9) is function 

 ( )p p p

i i i
Φ x A B x= + ,  1, 2p =   (21) 

The coefficients p

i
A  and p

i
B  are determined by using conditions (10)-(13). 

 A solution of equation (14) we seek in the form of a series 
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where the function ( )
,i k
xΨ , for fixed i  and k , is a solution of the following 

eigenproblem 
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The general solution of equation (23) can be written in the form 
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tain a homogeneous linear system of equations. The equation system in the matrix 
form reads  
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equation (29) exists when the condition  
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is fulfilled. The equation (30) is solved numerically with respect to eigenvalues 
k

γ , 

1,2,...k = . For the computed eigenvalues 
k

γ , the coefficients 
i

A  and 
i

B  occurring 

in equation (28) are determined by solving equation (29) with the assumption that 
1
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B = . The functions 

,i k
Ψ satisfy the orthogonality condition 
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Substituting the function ( ),
i
x tθ  in the form of the series (22) into equation 

(14) and using equation (23), after some transformation we obtain 
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Next, after multiplying the equation (32) by ( )
,i k
xΨ

′
, we integrate that equation 

successfully with respect to x  in the intervals [ ]1
,
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x x
−

. In result, summing the 

equations for 1,...,i n=  and using the orthogonality condition (31), we obtain 
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The differential equation (33) is complemented by an initial condition which we 
obtain using orthogonality condition (31) in equation (20). The initial condition as-
sumes the form 
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A solution of the problem (33)-(34) can be expressed by [11] 
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where 
,

Eα β  is the Mittag-Leffler function [10] and 
,1

E E
α α
= .  

Finally, the temperature distribution in the i-th sphere layer is given by equation 
(8) where the functions ( ) ( ) ( )

,

, ,

p

k i k i
t x xΓ Ψ Φ  are given by equations (35), (28) 

and (21), respectively. 

4. Numerical example  

The solution of the fractional heat conduction problem presented in section 3 can 
be used for the investigation of the effect of the parameters characterized the slab 
layers on the temperature distribution in the slab. In this section an illustrative ex-
ample is given of a five-layer slab heated by an outer source which changes the 
ambient temperature periodically. Numerical computation were performed for  
a slab with the same thicknesses of the layers: 

1
0.1 m

i i
x x

−

− =  (i = 1, 2,…,5),  

and the following thermal diffusivities: 6
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6

3
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= × ,  5
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ties: 
1

16.0λ = , 
2

24.0λ = , 
3

36.0λ = , 
4

54.0λ = , 
5

81.0λ =  W/(m·K). The heat 

transfer coefficients were assumed as: 
L
a = 1200.0, 

R
a = 400.0 W/(m2·K).  

The initial temperature 
0
T  and the ambient temperature 

R
T  were constants: 

0
50 KT = , 0

R
T = . The ambient temperature 

R
T  was a function of time:  

( ) sin
L

T t A B tν= + , where  A = 100,  B = 50 K  and  1
2 6000 sν π

−

= . Numerical 

calculations were carried out using the Mathematica package. 
 

 
Fig. 1. Non-dimensional temperature ( ) ( )

0
, ,T t x T t x T=  as functions of x x d=  for 

100
n

t d a=  and different values of the derivative order α 

 

Non-dimensional temperatures: ( ) ( )
0

, ,T t x T t x T= , as functions of non-

dimensional distance from the left surface of the slab: x x d= , for 100
n

t d a=  

and  0,5; 0,6; 0,7; 0,8; 0,9; 1,0;α =  are shown in Figure 1. The lower tempera-

tures on the right surface of the slab follow from this that the surroundings temper-
ature is assumed as zero. Large differences of the temperatures in the slab can be 
observed for the heat conduction models with fractional derivative orders which 
are close to one, but for small orders these differences are slight.  

5. Conclusions 

The solution of the time-fractional heat conduction problem in a multilayer slab 
in the form of an eigenfunctions series is obtained. In the particular cases of func-
tions characterized the volumetric heat source and surrounding temperatures, the 
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integrals including the Mittag-Leffler function which occur in the solution can be 
determined in an analytical form. The particular sums of the series occurring in the 
problem solution can be numerically computed with desired accuracy by using the 
Mathematica package. Although the presented numerical example deals the frac-
tional heat conduction in the five-layer slab, the solution can be used to determine 
the temperature distribution in a slab consisting of an arbitrary number of layers 
and particularly, to determine an approximate solution of this problem in a func-
tionally graded slab. 
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