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Abstract. An initial stability of Kirchhoff plates by the Boundary Element Method (BEM) 

is presented in the paper. A plate is subjected by external in-plane normal and tangential 

conservative loadings acting in two perpendicular directions. The Betti’s theorem is used to 

derive the boundary-domain integral equations. The direct version of the Boundary Element 

Method is presented with combination to simplified boundary conditions. The singular and 

non-singular approach of the boundary integrals derivation is used. 
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1. Introduction  

The Boundary Element Method (BEM) is often used in the theory of thin and 

thick plates. There is a number of contributions devoted to the application of the 

BEM to the stability analysis of plates. Shi [1] applied the BEM formulation for 

vibration and the initial stability problem of orthotropic thin plates and used the 

Bèzine technique [2] to establish the vector of plate curvatures inside a plate  

domain. Nerantzaki and Katsikadelis [3] solved the buckling problem of a plate 

with variable thickness. The authors applied the Analog Equation Method (AEM) 

connected to pure BEM [4]. A similar approach was applied by Chinnaboon, Chu-

cheepsakul and Katsikadelis [5] to solve buckling analysis of plates. Katsikadelis 

and Babouskos [6] applied AEM in combination with the BEM to describe and 

solve the nonlinear flutter instability problem of thin dumped plates. In order to 

simplify the assembly of a set of algebraic equations and calculation procedures, 

Guminiak, Sygulski [7] and Guminiak [8] proposed a modified, simplified formu-

lation of the boundary integral equations for a thin plate. Katsikadelis [9] solved 

the plate stability problem considering complex external in-plane loading condi-

tion. The author used a combination of the AEM-BEM approach and used differ-

ence operators to define the vector of curvatures inside a plate domain. In the pre-

sent paper, an analysis of plate initial stability by the BEM will be presented. The 
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analysis will focus on the modified formulation [7, 8] of thin plate bending. The 

Bèzine technique [2] will be established to directly derive the boundary-domain in-

tegral equations. 

2. Integral formulation of a thin plate stability problem   

The differential equation governing of plate initial stability has the form [10]: 

 pwD ~4
−=∇⋅  (1) 

where p~  is the in-plane external load defined as 
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On the plate boundary, the following variables are considered: shear force 
n
T
~

, 

bending moment 
n
M  and deflection w , angle of rotation in normal direction 

n
ϕ  

and angle of rotation in tangent direction 
s
ϕ . The expression ( ) ( ) ( )yyy

nnn
RTT +=

~

 

denotes shear force for clamped and simply-supported edges, wherein 

( ) ( )yy
nn

VT =

~

 on the boundary far from the corner and ( ) ( )yy
nn

RT =

~

 on a small 

fragment of the boundary close to the corner [8]. The relation between ( )y
s
ϕ  and 

the deflection is known: ( ) ( ) dsdw
s

yy =ϕ  and it can be evaluated  using a finite 

difference scheme of the deflection with two or more adjacent nodal values. In this 

analysis, the employed finite difference scheme includes the deflections of two  

adjacent nodes. The boundary-domain integral equations are derived using the  

Betti's theorem and they have the form: 
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where the fundamental solution of biharmonic equation ( ) ( )xy −⋅=∇ δDw 1
4  is 

given as a Green function 
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xy  (5) 

for a thin isotropic plate, xy −=r , δ  is the Dirac delta and 

( ) ( )( )2
p

3
p 112 v E hD −=  is the plate stiffness. The coefficient )(xc  depends on the 

localization of point x and 1)( =xc , when x is located inside the plate region, 

5.0)( =xc , when x is located on the smooth boundary and 0)( =xc , when x is  

located outside the plate region. The second boundary-domain integral equation (4) 

can be derived by substituting a unit concentrated force 1
*
=P  by unit concentrat-

ed moment 1
*
=

n
M . It is equivalent to differentiate the first boundary integral equa-

tion (3) on n direction in point x on a plate boundary, wherein 
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3. Assembly of a set of algebraic equations  

A plate is subjected by in-plane external loading (Fig. 1). The distribution of  

external loading along a plate edge is constant. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 1. A plate subjected by in-plane external loading 

Let it be assumed that a plate boundary is discretized using elements of the con-

stant type and a plate domain is divided into rectangular sub-domains. It is assumed 

that the relation between external in-plane forces 
x
N , 

y
N  and 

xy
N  is known, so 

that the problem is defined as a single-parameter issue. The set of algebraic equa-

tions has following form: 
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where the critical force 
cr
N  is expressed by eigenvalue multiplier λ , ( )

cr
N=λ .  

All of the designations appearing in matrix equation (6) are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
Fig. 2. Construction of the characteristic matrix 

The boundary-domain integral equations are formulated in a singular and a non-

singular approach [8]. Integration of suitable fundamental functions is done in  

a local coordinate system ni, si connected with i
th
 boundary element and next, these 

integrals must be transformed to nk, sk coordinate system, connected with k
th
 ele-

ment. For a non-singular approach, the localization of a collocation point is defined 

by the parameter δ
~

 which determines the distance from a plate edge or by non-

dimensional parameter dδε
~

=  where d is the element length [7, 8]. The vector of 

unknowns consist: B - the vector of boundary independent variables,
s
ϕ  - the vector 

of additional parameters of the angle of rotation in the tangential direction, which 

depends on the boundary deflection in case of the free edge and κ~  - vector specify-

ing generalized curvatures inside a plate domain. The matrix 
BB
G  groups bounda-

ry integrals dependent on type of boundary and the matrix 
Bs
G  groups boundary 

integrals of functions *

ns
M  and *

ns
M  in case of free edge occurrence and it is the 

additional matrix grouping boundary integrals corresponding with rotation in tan-

gential direction
s
ϕ . The matrix 

κB
G ~  groups values of fundamental functions ∗

w  

and ∗

w  established in internal collocation points associated with rectangular inter-
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nal sub-surfaces. The matrix ∆  groups the finite difference expressions for the an-

gle of rotation in the tangential direction 
s
ϕ  in terms of deflections at suitable, ad-

jacent nodes and I is the unit matrix. In the computer program, deflections at two 

neighbouring nodes are used. Hence, for a clamped edge, a simply-supported edge 

and a free edge, two independent unknowns are always considered. Let the opera-

tor 
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acts on the first boundary-domain integral equation (3) wherein coefficients 

C∈γβα ,,  are known. Matrices 
Bκ
G~ , 

sκ
G ~  and 

κκ
G ~~  group boundary and domain 

integrals using fundamental functions obtained for the first boundary-domain inte-

gral equation (3) which was subjected by the operator (7). Elimination of boundary 

variables B  and 
s
ϕ  from matrix equation (6) leads to a standard eigenvalue prob-

lem 

 { } 0κIA =⋅⋅−
~

~

λ  (8) 

where λλ /1
~
=  and 
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4. Modes of buckling 

The elements of the eigenvector κ~  obtained after solution of the standard  

eigenvalue problem (8) present the plate curvatures. The set of the algebraic equa-

tions indispensable to calculate the elements of eigenvector w has the form 
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where the first and second equations (10)1 and (10)2 are obtained from the first and 

second equations of (6) and the third equation (10)3 is gotten by construction of the 

boundary integral equations for calculating the plate deflection in internal colloca-

tion points. The wanted displacement vector w can be calculated directly by elimi-

nation of boundary variables B  and 
s
ϕ  

 ( ) [ ][ ] κGGG∆GGGw
BwBsBBwswBww

~1
⋅⋅+⋅⋅−−⋅=

−

λ  (11)    
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5. Numerical examples 

The initial stability problem of rectangular plates with various boundary and 

load conditions is considered. The loaded plate edge must be supported. The criti-

cal value of the external loading is investigated. Each of the plate edges is divided 

by the boundary elements of the constant type with the same length.  The set of the 

internal collocation points associated with sub-domains is regular. The plate prop-

erties are: Young modulus E = 205 GPa, Poisson ratio v = 0.3. The following nota-

tions are assumed: BEM I - singular formulation of governing boundary-domain 

integral equations (3) and (4); BEM II - non-singular formulation of governing 

boundary-domain integral equations (3) and (4), the collocation point of single 

boundary element is located outside, near the plate edge, 001.0
~
== dδε  [7, 8]. 

The critical force 
cr
N  is expressed using non-dimensional term: 

 
yx
ll

D

N
N ⋅⋅=

cr
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~

 (12) 

where D is the plate stiffness, 
x
l  and 

y
l  are the plate in-plane dimensions. 

5.1. Example 1 

A square plate, simply-supported on a whole edge and subjected by 
x
N  and 

y
N  in-plane forces is considered. The intensities of external in-plane forces are 

constant. The plate edges were divided into 64 boundary elements and the number 

of internal square sub-domains is equal to 256. The results of the calculation are 

presented in Table 1. 

 

 

Table 1 

Critical forces  

Ñcr 

Ñy/Ñx , (Ñx > 0) 

–0.25 0.0 0.25 0.5 0.75 1.0 

BEM I  52.826 39.620 31.696 26.424 22.640 19.810 

BEM II  52.848 39.636 31.583 26.319 22.559 19.739 

Analytical [10] 52.638 39.478 31.708 26.424 22.649 19.818 

 

 

The first buckling mode for 
yx
NN =  is shown in Figure 3. 
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Fig. 3. The first buckling mode of the square plate, simply-supported on a whole edge for Nx = Ny 

5.2. Example 2 

A square plate clamped on a whole edge and subjected by 
x
N  and 

y
N  in-plane 

compressive forces is considered. The intensities of external in-plane forces are 

constant. The plate boundary and domain discretizations are the same as in the  

Example 1. The results of the calculation for 
yx
NN =  are presented in Table 2. 

 

Table 2 

Critical forces  

Ñcr  

BEM I BEM II Analytical [10] 

52.784 52.784 52.605 

 

The first buckling mode for 
yx
NN =  is shown in Figure 4. 

 

 

 

 

Fig. 4. The first buckling mode of the square plate, clamped on a whole edge for Nx = Ny 

5.3. Example 3 

Square and rectangular plates clamped and simply-supported on a whole edge 

and subjected by 
xy
N  in-plane forces are considered. The intensity of 

xy
N  is con-

stant. For the square plate, the boundary and domain discretizations are the same as 

in Example 1. The results of calculation are presented in Table 3. The first buckling 

modes are shown in Figure 5. 
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For the rectangular plate ( )
yx
ll ⋅= 2  the number of boundary elements is equal to 

120 and the number of internal square sub-domains is equal to 200. The results of 

the calculation are presented in Table 4. The first buckling modes for both plates 

are shown in Figure 6. 

Table 3 

Critical forces  

Ñcr = Ñxy 
Plate 

Clamped Simply-supported 

BEM I 146.833 93.009 

BEM II 146.841 93.051 

Analytical [10] 145.182 92.182 

 

 

 

 

 

    

Fig. 5. The first buckling mode for the square plates: a) clamped and b) simply-supported  

Table 4 

Critical forces  

Ñcr = Ñxy 
Plate 

Clamped Simply-supported 

BEM I 208.200 131.683 

BEM II 208.201 131.682 

Analytical [10] 204.103 130.279 

 

 

 

    

Fig. 6. The first buckling mode of the rectangular plates: a) clamped and b) simply-supported  
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5.4. Example 4 

A square plate, clamped on all edges, is subjected by in-plane compressive  

forces 
x
N , 

y
N  and additionally by tangential forces

xy
N . The intensities of exter-

nal in-plane forces are constant. The plate boundary and domain discretizations are  

the same as in Example 1.  

The results of calculation are presented in Table 5. The first buckling mode for 

xyyx
NNN ==  is shown in the Figure 7a and for 

xyyx
NNN ⋅== 5.0  in the Figure 7b. 

 

Table 5 

Critical forces  

Ñcr Ñx = Ñy = Ñxy Ñx = Ñy = 1.5·Ñxy Ñx = Ñy = 2·Ñxy Ñx = Ñy = 0.5·Ñxy 

BEM I 46.305 32.964 25.395 73.990 

BEM II 46.306 32.965 25.395 73.993 

Analytical [10] 44.413 31.978 24.773 69.975 

 

 

 

    

Fig. 7. The first buckling mode of the square clamped plate for: a) Nx = Ny = Nxy, b) Nx = Ny = 0.5· Nxy  

5.5. Example 5 

A square plate simply-supported on two opposite edges with two edges clamped 

and subjected by 
xy
N  in-plane forces is considered (Fig. 8).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. A square plate simply supported on two opposite edges with two edges clamped 
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The intensity of 
xy
N  forces is constant. Two types of discretization were adopted:  

a) the number of boundary elements is equal to 64 and the number of internal 

square sub-domains is equal to 256;  

b) the number of boundary elements is equal to 120 and the number of internal 

square sub-domains is equal to 400.  

The results of calculation are presented in Table 6. The first buckling mode is 

shown in Figure 9. 
 

Table 6 

Critical forces  

Ñcr = Ñxy 

BEM I(a) BEM II(a) BEM I(b) BEM II(b) Analytical [10] 

125.811 125.814 125.143 125.143 122.312 

 

 

 

 

Fig. 9. The first buckling mode of the square plate, simply-supported on two opposite edges with two 

edges clamped 

5.6. Example 6 

A square and rectangular plates simply-supported and clamped on two opposite 

edges with two edges free and subjected by 
x
N  in-plane forces are considered  

(Fig. 10).  

 

 

 

 

 

 

 

 

 

 

Fig. 10. A square plate simply-supported and clamped on two opposite edges with two edges free 
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The intensity of 
x
N  forces is constant. For the square plate, the boundary and  

domain discretizations are the same as in Example 5. The results of calculation are 

presented in Table 7. The first buckling mode is shown in Figure 11. 

 

Table 7 

Critical forces  

Ñcr = Ñx 

BEM II(a) BEM II(b) Analytical [10] 

19.740 19.724 18.864 

 

 

 

 

Fig. 11. The first buckling mode of the square plate simply-supported and clamped on two opposite 

edges with two edges free 

The rectangular plate has following relations between its dimensions: 
yx
ll ⋅= 3 . 

The number of boundary elements is equal to 120 and the number of internal 

square sub-domains is equal to 300. The results of calculation are presented in  

Table 8. The first buckling mode is shown in Figure 12. 

Table 8 

Critical forces  

Ñcr = Ñx 

BEM II 6.418 

Analytical (beam analogy) 6.110 

 

 

 

 

 

Fig. 12. The first buckling mode of the rectangular plate simply-supported and clamped on two oppo-

site edges with two edges free 
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6. Concluding remarks 

An initial stability of thin plates considering the various conservative load con-

ditions was solved by the Boundary Element Method. This problem was formulat-

ed according to the modified approach, in which the boundary conditions are  

defined so that there is no need to introduce equivalent boundary quantities dictated 

by the boundary value problem for the biharmonic differential equation. The collo-

cation version of the BEM with singular and non-singular calculations of integrals 

were employed and the constant type of the boundary element is introduced. The 

Bèzine technique [2] was used to establish the vector of generalized curvatures  

inside a plate domain which was divided into rectangular sub-surfaces. The high 

number of boundary elements and internal sub-domains is not required to obtain 

sufficient accuracy. The loaded plate edge must be supported in case of external  

in-plane conservative loading. This condition is required in proposed formulation 

of buckling analysis. The boundary element results obtained for presented concep-

tion of a thin plate bending issue were compared with corresponding analytical  

solutions derived from classic thin plate [10] and beam theories. The BEM results 

demonstrate the sufficient effectiveness and efficiency of the proposed approach.  
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