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Abstract. This study formulates and solves the problem of transverse damped vibration 

in the system of changing the boom radius in a truck crane with advanced cylinder design 

for controlling the boom radius. The dissipation of vibration energy in the model adopted 

in the study occurs as a result of internal damping of the viscoelastic material (rheological 

Kelvin-Voigt model) of the beams that model the system and movement resistance 

in the supports of the cylinder and crane boom to the bodywork frame of the crane. 

Damped frequencies of vibrations and degree of vibration amplitude decay were calculated. 

The study also presents eigenvalues of system vibration with respect to changes in damping 

coefficients and system geometry for a selected load. 
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1. Introduction 

The system of changing the boom radius in a truck crane represents the system 

with a high level of complexity and a series of studies have been devoted to 

the analysis of its dynamics. The monograph [1] and work [2] have been entirely 

focused on investigations of the dynamics and modelling of truck cranes and their 

components. Analysis of dynamic stability of truck crane was presented in the study 

[3], whereas the study [4] examined its free and parametric vibrations. The methods 

of positioning of load location and its effect on vibration of a truck crane were 

presented in the studies [5-7]. In most of the above studied, modelling of a cylinder 

that changes the boom radius was simplified, whereas the effect of damping has 

not been taken into consideration. The investigations concerning damped vibration 

have been discussed in [8-13]. The effect of small internal and external damping 

on stability of non-conservative beam systems was presented in [8]. The authors of 

the study [9] demonstrated the effect of internal damping on vibrations of a support 

beam with a mass attached to the free end of the beam. The study [10] presented 

the effect of constructional damping of supports on free vibrations in a simple 
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Bernoulli-Euler beam. The study [11] examined damped vibrations of a simple 

beam, where damping in the system was represented by translational and rotational 

dampers. 

This study concerns the analysis of damped vibrations in the system of chang-

ing the boom radius of a DST0285 truck crane. Previous studies in this field exam-

ined vibrations of the system with internal damping [12] and vibrations in the sys-

tem with constructional damping of supports [13]. The dissipation of vibration 

energy in the model adopted occurs as a result of simultaneous internal damping of 

the viscoelastic material of the beam used in the model and the constructional 

damping in the locations of supports of the cylinder and crane boom with the body- 

work frame of the crane. The constructional damping of supports was modelled 

using rotational viscous dampers. The results obtained were presented by means 

of three-dimensional graphs. 

2. Physical and mathematical models of the system 

The physical model of changes in the crane boom radius is presented in Figure 1. 

Changes in boom radius (boom inclination angle) are controlled by a hydraulic 

cylinder fixed to the rotational frame of the crane boom. 
 

x
2
2

,  
x
2
1

x
1
2

x
1
1

W
  (x , t)
2 2

W
  (x , t) =

1 1

W
  (x , t)

W
  (x , t)
2 1

P

  c R 1 1

1 2

  c R 31

3
1

W
 ( x , t )

3
2

W
 ( x , t )x 3

1

x 3 2

l 3
1

l 3
2

L C

k S

E 3
2

*

E 3
1

*

E
2 2

*

E
2 1

*

E
1 2

*

E
1 1

*

 

Fig. 1. Physical model of the system of changing the crane boom radius 
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Formulation of the boundary problem was carried out using the Hamilton’s 

principle: 
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where kinetic energy of the system T is expressed by the equation: 
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Potential energy of the system V: 
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Components of the virtual work of non-conservative forces WN come from the dis-

sipation forces that result from internal damping of the viscoelastic material E
*
mn 

(rheological Kelvin-Voigt model) of the beams that model the system and for con-

structional damping in the cylinder support and CR31  and for constructional damp-

ing in the crane support CR11: 
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Performing the integration, using the commutative properties of these opera-

tions with respect to spatial variables and time and commutative properties of 

variational and differential operators and integration by parts and replacement 

of the equation (1) yield: 
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Equations of motion for individual beams in the model of changing the boom 

radius were denoted as: 
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where: Wmn (x,t) - transverse displacements of beams, Emn - Young’s moduli in 

beams, E
*
mn - viscosity coefficients in beams, Amn - cross-sectional areas of beams, 
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Jmn - moments of inertia for cross-sectional areas of beams, ρmn - beam material 

densities, Pmn - longitudinal forces in beams used in the model of the crane boom 

and the cylinder for changing the boom radius (P12 = 0, Pp = P cosα), m = 1,2,3; 

n = 1,2; x - spatial coordinate, t - time. 

Solutions of equations (6) are in the form: 
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Geometrical boundary conditions and continuity conditions are given by: 
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The natural boundary conditions of the system studied: 
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The solution for the equations (8) is given by: 
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Substitution of (11) to (10a-b) yields a homogeneous system of equations with 

respect to unknown constants Ckmn , which, in the matrix form, can be written as: 

 [ ]( ) 0
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where: 
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pq
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The system has a non-trivial solution if the determinant of the coefficient matrix 

(with constant Ckmn) equals zero. 

 ( ) 0det
*
=ωA  (15) 

Finding integrated eigenvalues of the matrix A(ω
*
) leads to the determination 

of damped vibration frequency and the degree of vibration amplitude decay in the 

system studied. Depending on the solution adopted, the real and imaginary parts of 

the eigenvalues can be positive or negative and can represent damped vibration 

frequency or the degree of vibration amplitude decay. In this study, the real part 

Re(ω
*
) of the solution corresponds to the damped vibration, whereas the imaginary 

part Im(ω
*
) characterizes the degree of vibration amplitude decay. Presentation 

of the results was based on positive values of the real and imaginary parts of 

solutions. 
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3. Numerical calculation results 

Calculations were carried out for the system of controlling changes in crane 

boom radius in a DST0285 truck crane loaded with the force of P = 2.5 kN. 

The loading force adopted is the highest permissible load of a crane with maximum 

extension of the crane boom and minimal angle of inclination. Computations were 

carried out for the data contained in Table 1. 

Dimensionless damping parameters were used in the study: η for internal damp- 

ing of viscoelastic material of beams, µ11 for constructional damping in the cylinder 

support, and µ31 for constructional damping in the crane boom support. 
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LC, LS - total lengths of the crane boom and cylinder. 

Table 1 

Physical and geometrical parameters of the model 

Parameter Value 

Length of the fixed component of the crane boom [m] 7.95 

Length of the retractable component of the second crane boom [m] 8.3 

Length of the retractable component of the third crane boom [m] 8.2 

Set stroke of telescopic cylinder [m] variable  

External height of the basic component of the crane boom [m] 0.596 

External height of the 2/3 component of the crane boom [m] 0.517 / 0.448 

Internal height of the basic component of the crane boom [m] 0.585 

Internal height of the 2/3 component of the crane boom [m] 0.509 / 0.441 

External width of the basic component of the crane boom [m] 0.397 

External width of the 2/3  component of the crane boom [m] 0.355 / 0.311 

Internal width of the basic component of the crane boom [m] 0.39 

Internal width of the 2/3  component of the crane boom [m] 0.348 / 0.304 

Cylinder outer diameter [m] / Cylinder inner diameter [m] 0.277 / 0.25 

Piston outer diameter [m] / Piston inner diameter [m] 0.16 / 0.128 

Material density in boom crane and cylinder [kg/m3] 7860  

Density of the liquid in the cylinder [kg/m3] 890 

Young modulus for the material of the boom crane and cylinder [Pa] 2.1 x 1011 

Liquid shear modulus [Pa] 1.25 x 109 
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The results of the calculations are presented in Figures 2 to 8. Due to substantial 

differences in the values between real and imaginary parts of eigenvalues, the results 

were presented in different figures. Similarly, different figures were used to present 

considerable differences in the first and second eigenvalue. 

The relationships between the first ω1 (a) and the second ω2 (b) frequency 

of system vibration and changes in the angles of its inclination α and total length 

of the crane boom LC without damping in the system are presented in Figure 2. 

 
a) b) 

      

Fig. 2. Relationship between the first (a) and the second (b) frequency of the system 

of changing the boom radius and total boom length LC and angles 

of its inclination α without damping 

a) b) 

      

Fig. 3. Relationship between the first eigenvalue (real parts (a) and imaginary parts (b)) 

in the system of changing the boom radius and total boom length LC 

and angles of its inclination α 

The relationship of the real part Re(ω
*
) and the imaginary part Im(ω

*
) of the 

first and second eigenvalue of the system for changing the boom radius with total 

length of the crane boom LC and angle of inclination α is presented in Figures 3a, b, 

4a and b. Calculations were carried out for damping coefficients of η = 0.001 

and µ11 = µ31 = 0.4. 
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a) b) 

      

Fig. 4. Relationship between the second eigenvalue (real parts (a) and imaginary parts (b)) 

in the system of changing the boom radius and total boom length LC 

and the angles of its inclination α 

Figures 5a, b and 6a, b present the dependence of the real and imaginary parts 

of the first and second eigenvalues of the system of changing the boom radius on 

simultaneous changes in internal damping coefficient η and constructional damping 

coefficient µ = µ11 = µ31 with crane inclination angle α = 41° and total crane boom 

length of LC = 11.89 m. 

 
a) b) 

      

Fig. 5. Relationship between the first eigenvalue (real parts (a) and imaginary parts (b)) 

of the system of changing the crane boom and damping coefficients η 

and µ = µ11 = µ31 

Further investigations were focused on determination of the dependence of the 

first and the second eigenvalue of the system of changing the boom radius on 

changes in constructional damping coefficient µ = µ11 = µ31 and changes in total 

length of the crane boom LC for internal damping coefficient of η = 0.001. Due to 

insignificant changes in the values of real parts with respect to the system without 

damping, Figures 7a and b present only f (Im(ω
*
)). 
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Fig. 6. Relationship between the second eigenvalue (real parts (a) and imaginary parts (b)) 

of the system of changing the crane boom and damping coefficients η and µ = µ11 = µ31 

      

Fig. 7. The relationship of the imaginary part of the first (a) and second (b) eigenvalue 

of the system of crane boom change on total crane boom length LC and damping coefficient µ 

Figures 8a and b present the dependence of the imaginary part of the first and 

the second eigenvalue of the system of changing the boom range on changes in in-

ternal damping coefficient η and changes in total length of the crane boom LC with 

constructional damping coefficient of µ  = µ11 = µ31 = 0.4. 

 

      

Fig. 8. The relationship of the imaginary part of the first (a) and second (b) eigenvalue 

of the system of crane boom change on total crane boom length LC and damping coefficient η 

a) b) 

a) b) 

a) b) 
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Limitation of the scope of the study to the analysis of changes in the two first eigen- 

values of the system for changing the crane boom radius with changes in geometry 

and damping in the system results from their fundamental importance to engineer-

ing practice. 

4. Conclusions 

This study presented a beam model of a system of telescopic crane boom and 

hydraulic cylinder designed based on the actual truck DST0285 system. The study 

examined the effect of geometry of the damped system with the load adopted on its 

eigenvalues and the effect of simultaneous internal damping and constructional 

damping of the supports on eigenvalues with selected geometry of the system. 

The study demonstrated that taking damping in the system into consideration 

causes similar changes in the frequencies of damped vibrations with changes 

in system geometry (Figs. 3, 4) as in the system without damping (Fig. 2). Substan-

tial changes can be observed in the degree of vibration amplitude decay, both the 

first and the second eigenvalue Im(ω
*
) in the case of changes in the length of crane 

boom LC. Similarly, significant changes occur for coefficient Im(ω
*
) with changes 

in the crane boom inclination angle α. The decrease of vibration amplitude of the 

system is represented by the increase of the degree of vibration amplitude decay. 

In other words, this coefficient characterizes the damping ability of such a system. 

The constructional damping of supports with selected value of internal vibration 

causes considerably higher changes in eigenvalues of the system than in the oppo-

site case (change in the value of coefficient η with selected value of µ11  and µ31). 

An increase in constructional damping causes the increase in the values of the 

degree of vibration amplitude decay Im(ω
*
) to maximum values, Im(ω

*
)→0 where 

µ11 and µ31→∞ (Fig. 6b). The degree of determination of the angle of inclination 

of the crane boom (and, consequently, the degree of cylinder extension) and the 

length of crane boom extension for which the degree of vibration amplitude decay 

is the highest allows for determination of optimum lengths of the cylinder and 

the crane boom with respect to minimum vibration amplitudes in the system. 

Therefore, the use of rotational dampers can be considered as an additional method 

of controlling the dynamics of the system studied. 
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