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Abstract. We study the  M
θ
/G/1/m  and  M

θ
/G/1  queuing systems with the function of the 

random dropping of customers used to ensure the required characteristics of the system. 

Each arriving packet of customers can be rejected with a probability defined depending on 

the queue length at the service beginning of each customer. The Laplace transform for the 

distribution of the number of customers in the system on the busy period is found, the mean 

duration of the busy period is determined, and formulas for the stationary distribution of 

the number of customers in the system are derived via the approach based on the idea of 

Korolyuk’s potential method. The obtained results are verified with the help of a simulation 

model constructed with the assistance of GPSS World tools. 
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Introduction 

For the purpose of preventing overloads in the nodes of packet-switched 

networks (ATM, TCP/IP, etc.) the active queue management (AQM) algorithms 

are used. In the queuing system simulating a network node, each arriving packet 

can be dropped with a certain probability dependent on the queue length, even if 

a buffer is not completely filled. Dependence of the probability of packet dropping 

on the queue length is called a dropping function [1]. 

In AQM algorithms different dropping functions are used, for example in a known 

algorithm RED (Random Early Detection) [2], this function is linear. Thanks to 

preventive random packet dropping, AQM algorithm indirectly informs the sender 

that uses the TCP protocol on the oncoming overload. Application of this algorithm 

in the router can bring a lot of beneficial effects, including reduction of queue 

and network delay time (more details can be found in [3]). 

Studies show [1] that the mechanism of the dropping function is a powerful tool 

for parameter control of a queuing system. This mechanism can not only regulate 

the queue length, loss probability of customers, waiting time, and queue length 

variance, but also regulates several of these parameters simultaneously. The models 
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with the dropping also have deep universal meaning. If we can not regulate the 

parameters of a queuing system through changes in the input flow or service 

process, application of dropping function is a simple and effective way to provide 

the required parameters of the queuing system. 

The use of the queuing theory to analyze the active queue management 

algorithms started in recent years [1, 4-8]. As a rule, the authors restrict the study 

of systems with exponential distribution of the service time and in the case of 

consideration of the general law of the service time distribution, the assumption 

of ordinary input flow is used. 

In this paper we consider the M
θ
/G/1/m and M

θ
/G/1 queuing system with the 

dropping function of general form. Each arriving packet of customers can be 

accepted for service with a probability dependent on the queue length. We assign 

this probability according to the rule: if at the beginning of a customer service n  

customers are in the system then each packet of customers arriving in the course of 

the service of this customer is accepted for service with probability 
n
β  and leaves 

the system (is discarded) with probability 1 .
n
β−  

In paper [8], we also studied the queuing systems with the dropping function of 

general form. In contrast to this article, in [8] we consider the systems of M
θ
/M/n  

and M
θ
/M/1/m types and the probability 

n
β  is assigned depending on the queue 

length at the time of the arrival of each customer packet. 

We use an approach based on the idea of Korolyuk’s potential method [9], 

in particular, its modification developed in [10] for the queuing systems with 

operating parameters dependent on the queue length. 

1. Description of the model and basic notation 

Let λ  be a parameter of the exponential distribution of the time intervals between 

moments of arrival of customer packets, 
n
β  is the probability of acceptance for 

the service of an arriving customer packet appointed at the start of customer service 

according to the algorithm described above. If at the beginning of a customer service 

n  customers are in the system, then in the course of its service the time intervals 

between moments of arrival of customer packets received for service are distributed 

exponentially with parameter = .
n n

λ λβ  Therefore, the functioning of the queuing 

system with a dropping function of customer packets can be represented as 

a sequence of modes which differ values of the parameters 
n
λ  ( 1n ≥ ) of the input 

flow. Introducing the notation 
0
=λ λ  we obtain the sequence 

n
λ  ( 0n ≥ ). 

Consider an M
θ
/G/1/m queuing system, which can formally be described as 

follows. Assume that sequences of independent and identically distributed random 

variables { }
ni
α , { },

i
θ  { }

i
δ  ( 1,  0)i n≥ ≥  are specified for the n-th functioning 

mode. Here 
ni
α  is the time between arrivals of the ( 1)i − th and i-th customer 

packets, 
i

θ  is the number of customers in the i-th packets and 
i

δ  is the service time 
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of i-th customer. We assume that { < }=1P n
x

ni
x e

λ
α

−

− ( > 0),
n
λ  { < } = ( )

i
x F xδP  

( 0)x ≥ , (0) = 0;F  { = }= ,i jj aθP  
=1

=1.j

j

a

∞

∑  If 
1

{ =1}= =1,
i

aθP  then customers 

arrive at the system one by one. 

Customers are served one by one, a served customer leaves the system, and the 

server immediately starts serving a customer from the queue, if one exists, or waits 

for the arrival of the next customer packet. The first-in first-out (FIFO) service 

discipline is used. A queue inside one customer batch can be arbitrarily organized, 

since the characteristics under study are independent of the way in which the queue 

is organized. Let m  be the maximum number of customers that can simultaneously 

be in the queue. 

Denote by 
n
P  the conditional probability, provided that at the initial time 

the number of customers in the queueing system is 0,n ≥  and by E(P) the 

conditional expectation (the conditional probability) if the system starts to work at 

the time of arrival of the first batch of customers. We denote the described system 

by M /G/1/m.
n
β
θ  

We introduce the following notations: ( , )
n

xη λ  is the number of customers 

arriving in the system during the time interval [0; )x  under the condition that the 

time intervals between moments of arrival of the customer packets are 

exponentially distributed with parameter 
n
λ ; k

ja
∗  is the k-fold convolution of the 

sequence ;ja  

 

0 0

=1 = = = =1

0

1
(*

1

=0 0

( ) = ( ), = ( ) < , ( ) =1 ( );

( ) = ; = ; = ; = ; = < ;

1
( ) { ( , ) = 1} ( )

( )

( )1 )
= ( ) ( 1, 1);

( ) !

P

n

sx

k
k j k j k j k a k

k k j k j k j k

sx
ni n

ki
k n
i

k

f s e dF x M xdF x F x F x

z z a a a p p q q e ka

p s e x i dF x
f s

xs x
a e dF x n i

f s k

λ

α

η λ

λ

∞ ∞

−

∞ ∞ ∞ ∞ ∞

∞

−

∞+

−

+

∞ −

∞

= + =

+
≥ ≥ −

∫ ∫

∑ ∑ ∑ ∑ ∑

∫

∑ ∫

0

(*

=0 0

1

, 1

( ) { ( , ) = } ( )

( ))
= ( ) ( 1, 0);

!

1
( ) ,

( ) ( )

P

n

sx
ni n

ki
k n
i

k

n

n

q s e x i F x dx

xs x
a e F x dx n i

k

R s
f s p s

λ

η λ

λ

∞

−

∞

−

−

= =

+
≥ ≥

=

∫

∑ ∫

 (1) 
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1

,

=0
, 1

, 1

( ) ( ) ( ) ( )

( ) = ( 1, 1);
( ) ( )

k

nk ni n k i

i

n k

n

R s f s p s R s

R s n k
f s p s

−

−

+

−

−

≥ ≥

∑
  

 
0 0 0

= lim ( ), = lim ( ), = lim ( ).
ni ni ni ni ni ni

s s s

p p s q q s R R s
→+ →+ →+

 (2) 

All dependences on s  we consider for values Re 0s ≥  of the argument. 

Note that for all {1,2, , 1}n m∈ +…  the equality 
= 1

=1
ni

i

p

∞

−

∑  holds, therefore 

sequence 
ni
p  can be interpreted as the distribution of jumps in a certain semi- 

continuous from below random walk. 

Taking into account that 

=0

1 ( (1 ( )))
= ,

(1 ( ))

k n

nk

k n

f z
z q

z

λ α

λ α

∞
− −

−
∑  

we obtain the equalities 

 
=0

= .
nk

k

q M
∞

∑  (3) 

The sequences 
nk

q  and 
nk
R  can be computed using recurrence relations: 

 
, 1

0 ,

=1

1 ( )
= , = ( , 1);

k
n kn

n nk i n k i

in n

pf
q q a q n k

λ

λ λ

−

−

−
− ≥∑  (4) 

 

1

,

=0
1 , 1

, 1 , 1

1
= , = ( , 1).

k

nk ni n k i

i

n n k

n n

R p R

R R n k
p p

−

−

+

− −

−

≥

∑
 (5) 

2. Distribution of the number of customers in the system during 

the busy period 

Let ( ) = inf{ 0 : ( ) = 0}m t tτ ξ≥  denote the first busy period for the system 

M /G/1/m
n
β
θ

 and 

( )

( ) ( )

0

( , ) { ( ) = , ( ) > },

( , ) ( , ) (1 , 1).

m

n n

m st m

n n

t k t k m t

s k e t k dt n k m

ϕ ξ τ

ϕ

∞

−

=

Φ = ≤ ≤ +∫

P
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It is obvious that ( )
0 ( , ) = 0.
m

t kϕ  The total probability formula implies 

 (

)

( ) ( )
1

=0 0

( )

0

( , ) { ( ) = } ( , ) ( )

{ ( ) 1 } ( , ) ( ) { ( ) = }

{ = 1} { ( ) 2 } ( ) (1 ).

tm n
m m

n n n j

j

t

m

n m n

n

t k x j t x k dF x

x m n t x k dF x t k n

I k m t m n F t n m

ϕ η ϕ

η ϕ η

η

−

+ −
= − +

+ ≥ + − − + − +

+ + ≥ + − ≤ ≤

∑∫

∫

P

P P

P

 (6) 

Here { }I A  is the indicator of a random event A ; it equals 1 or 0 depending on 

whether the event A  occurs or not. 

Let , , 2( , , ) = ( ) { = 1} ( ).
n n k n n m n

q s k m q s I k m q s
− + −
+ +  Then, with allowance for 

relations (1), functions ( )
( , )

m

n
s kΦ  are defined from the system of equations derived 

from (6): 

 

( ) ( )
, 1 1

=0

( )
,

( , ) ( ) ( ) ( , )

( ) ( ) ( , ) ( , , ) (1 ).

m n
m m

n n j n j

j

m

n m n m n

s k f s p s s k

f s p s s k q s k m n m

Φ Φ

Φ

−

− + −

−

= +

+ + ≤ ≤

∑
 (7) 

In this case, the boundary condition is written as 

 ( )
0 ( , ) = 0.
m

s kΦ  (8) 

The functions 
( )

( , )
m

n
s kΦ  can be found by solving the system of equations (7) 

and (8). 

We will use the functions ( )
ni

sR  defined by recurrence relations: 

 

(,1 1,1 , 1 1,1 1,

1

1, 1 ,

=0

( ) ( ); ( ) = ( ) ( )

( ) ( ) ( ) (1 1, 0 1).

n n n j n n j

j

n i n i j i

i

s R s s R s s

f s p s s j m n n m

+ + + +

−

+ + + −

= −


− ≤ ≤ − − ≤ ≤ −


∑

R R R

R

 (9) 

Theorem 1 of [10] implies the following statement. 

Theorem 1. For 1 1k m≤ ≤ +  and Re > 0s  functions ( )
( , )

m

n
s kΦ  are defined as 

 

( ) ( )
, ,

=1

=1

( , ) ( ) ( ) ( ) ( ) ( , )

( ) ( , , ) (1 1),

m n

m m

n n m n ni n i m n i m

i

m n

ni n i

i

s k s f s s p s s k

s q s k m n m

Φ Φ

−

− + − −

−

+

 
= − − 
 

− ≤ ≤ −

∑

∑

R R

R

 (10) 
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where 

0
( ) =1

0 0 ,

=1

( ) ( , , )

( , ) = .

( ) ( ) ( ) ( )

m

i i

m i

m m

m i i m i

i

s q s k m

s k

s f s s p s
−

Φ

−

∑

∑

R

R R

 

3. Busy period and stationary distribution 

For a more compact notation of the obtained formulas below, we agree that 

0
( ) 1.

m
s ≡R  

If the system starts functioning at the moment when the first packet of 

customers arrives, then for all 1 1k m≤ ≤ +  using the formula of total probability 

we obtain the equalities 

 ( ) ( )
1 1

=10

{ ( ) = , ( ) > } = ( , ) ( , ).
m

st m m

n n m m

n

e t k m t dt a s k a s k

∞

−

+ +
+∑∫ P ξ τ Φ Φ  (11) 

Taking into account that 

( ) ( )
1

0

( ) ( )
1

( , ) = ( , ) ( ) { = 1} ( ),

1 ( )
( , ) = ( , ) { = 1} ,

t

m m

m m

m m

m m

t k t x k dF x I k m F t

f s
s k s k I k m

s

ϕ ϕ

Φ Φ

+

+

− + +

−
+ +

∫
 

and using the relations (10), we can rewrite the equality (11) in the form 

, ,

=1 =10

1
( )

1 1

=1 =1

{ ( ) = , ( ) } = ( ) ( ) ( ) ( )

1 ( )
( , ) ( ) ( , , ) { = 1} .

m m n
st

n n m n nj n j m n j

n j

m m n
m

m m n nj n j m

n j

e t k m t dt a s f s s p s

f s
a s k a s q s k m a I k m

s

∞ −

−

− + − −

− −

+ + +

  
> − +   

 

 −
+ − + +



∑ ∑∫

∑ ∑

P ξ τ

Φ

R R

R

 (12) 

To obtain a representation for 

0

{ ( ) > }
st

e m t dtτ

∞

−

∫ P  we sum up equalities (12) 

for k  running from 1 to 1m + . Given the definitions of ( , , )
n

q s k m  and ( ),
ni

q s  it is 

not difficult to ascertain that 

 
1

=1 =0

1 ( )
( , , ) = ( ) = (1 ).

m

n nk

k k

f s
q s k m q s n m

s

+ ∞

−
≤ ≤∑ ∑  (13) 

Thus, (12) confirms the following statement. 
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Theorem 2. For the system M /G/1/m
n
β
θ

 the Laplace transform of the distribution 

function of the busy period is defined as 

, , 1

=1 =10

0 1
=1

1

=1 =1
0 0 ,

=1

{ ( ) > } = ( ) ( ) ( ) ( )

( )
1 ( ) 1 ( )

( ) .

( ) ( ) ( ) ( )

m m n
st

n n m n nj n j m n j m

n j

m

n m m n
n

n nj mm
n j

m n n m n

n

e m t dt a s f s s p s a

s
f s f s

a s a
s s

s f s s p s

τ

∞ −

−

− + − − +

− −

+

−

  
− + ×    

  

 − −
× − −  

 −

∑ ∑∫

∑
∑ ∑

∑

P R R

R

R

R R

 (14) 

To find 

0

{ ( ) > } = ( )m t dt mτ τ

∞

∫P E  we need to pass to the limit in (14) as 0.s→+  

We use the sequences { },
ni
p  { }

ni
q  and { },

ni
R  defined by (2), as well as sequences 

{ },
ni
R  obtained by limit passage 

0

= lim ( ).
ni ni

s

s

→+

R R  For 
ni
R  (9) implies the recurrence 

relations 

 

,1 1,1

1

, 1 1,1 1, 1, 1 ,

=0

;

(1 1, 0 1).

n n

j

n j n n j n i n i j i

i

R

R p j m n n m

+

−

+ + + + + + −

=

 
= − ≤ ≤ − − ≤ ≤ − 

 
∑

R

R R R
 (15) 

It follows from (5) and (15) that 

 ,

=1

=1 ( 0, 1).
k

nk ni n i k i

i

p n k
+ −

− ≥ ≥∑R R  (16) 

Given (3), (13) and (16), using (14) we obtained the following statement. 

Theorem 3. The mean duration of the busy period of the queueing system 

M /G/1/m
n
β
θ

 is determined in the form 

 
1

0 1

=1 =1 =1

( ) = .
m m m n

i n ni m

i n i

m M a aτ

− −

+

 
− + 

 
∑ ∑ ∑E R R  (17) 

We introduce the notation: lim { ( ) = }= ( ), 1 1.
k

t

t k m k mξ π
→∞

≤ ≤ +P  Reasoning 

as in paper [11], we obtain formulas for the stationary distribution of the number of 

customers in the system M /G/1/m.
n
β
θ  

Theorem 4. The stationary distribution of the number of customers in the system 

M /G/1/m
n
β
θ

 is given by 
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0

1

0 0 , ,

=1 =1 =1

1

1 0 0 , 1 , 1 1

=1 =1 =1

1
( ) ;

1 ( )

( ) = ( ) (1 );

( ) = ( ) .

k k k n

k i i k i n ni n i k n i

i n i

m m m n

m i i m i n ni n i m n i m

i n i

m
m

m m q a q k m

m m q a q Ma

π
λ τ

π λπ

π λπ

− −

− + − −

− −

+ + − + + − − +

=
+

 
− ≤ ≤ 

 

 
− + 

 

∑ ∑ ∑

∑ ∑ ∑

E

R R

R R

 (18) 

Using (17) we find the ratio of the mean number of customers served per unit 

of time to the mean number of all arriving customers per unit time and obtain 

the formula for the stationary service probability for the system M /G/1/m
n
β
θ  

( )

1

0 1

=1 =1 =1

sv
( ) = .

1 ( )

m m m n

i n ni m

i n i

a

a a

m

e mλ τ

− −

+
− +

+

∑ ∑ ∑
P

E

R R

 

We find the stationary queue characteristics - mean queue length ( )Q mE  and mean 

waiting time ( )w mE  - by the formulas 

1

=1 sv

( )
( ) = ( ); ( ) = .

( )

m

k

k a

Q m
Q m k m w m

e m
π

λ
+∑

E
E E

P
 

4. The system M /G/1
n
β

θ  

Fixing a natural number {2,3, , }h m∈ …  we define a set of probabilities 
n
β  by 

the equalities 

, 1 1;
=

, .

n

n

n h

h n m

β
β

β

≤ ≤ −


≤ ≤
 

For { , 1, , }n h h m∈ + …  we introduce the notation: �
= ini

R R  ( 1i ≥ ), =
ni i
p pɶ  

( 1i ≥ − ), =
ni i

q qɶ  ( 0i ≥ ), = = .
n

λ λ λβɶ  

Using (15) and (5) we obtain the equalities 

�= , 1, 1,ini
R n h i≥ − ≥R  

from which and the formula (17) imply 

 �
2 1 1 1

0 1

=1 =1 =1 =1 = = =1

( ) .
m h h n h m n m m n

ii n ni n ni n m

i n i n i h n n h i

m M a a a R aτ

− − − − − − −

+

−

 
= − − − + 

 
∑ ∑ ∑ ∑ ∑ ∑ ∑E R R R  (19) 
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In what follows we study the corresponding queuing system with no restrictions 

on the queue length ( = ),m ∞  which we denote by M /G/1.
n
β
θ

 

For the system M /G/1
n
β
θ

 we introduce the notation: ( )tξ
∞

 is the number of 

customers in the system at time ,t  ( ) = inf{ 0 : ( ) = 0}t tτ ξ
∞

∞ ≥  is the first busy 

period, =
n n a

Meρ λ  (1 1n h≤ ≤ − ), = ;
a

Meρ λɶɶ  lim { ( ) = }= ( ),
k

t

t kξ π
∞

→∞

∞P  0.k ≥  

Reasoning as in [11] to investigate the system 
1 h

M /G , ,G /1,…

θ
 after passing to 

the limit in (19) and (18) as m→∞  we obtain the following results. 

Theorem 5. If <1,ρɶ  then for the system M /G/1
n
β
θ

 we have 

 

1 2 1

0

=1 =1 =1

1 1

01 1 0 ,

=2 =1

( )

1
( 1) ( 1) .

1

h h h n

i n ni

i n i

h i

a i n n i n i

i n

M a

e a

τ

ρ ρ
ρ

− − − −

− −

−


∞ = − +



  
+ + − + − −    −   

∑ ∑ ∑

∑ ∑

E

ɶ

R R

R R R

 (20) 

Theorem 6. If <1,ρɶ  then the stationary distribution of the number of customers 

in the system M /G/1
n
β
θ  is given by 

0

1

0 0 , ,

=1 =1 =1

1
( ) = ;

1 ( )

( ) = ( ) ( 1).
k k k n

k i i k i n ni n i k n i

i n i

q a q k

π
λ τ

π λπ

− −

− + − −

∞
+ ∞

 
∞ ∞ − ≥ 

 
∑ ∑ ∑

E

R R

 

To find the stationary values of the mean queue length ( )Q ∞E , you can use 

the approximate formula from [11] 

 
1

1
1 ( ) 1 1

=1 =1

( )
( ) = ( ) = ( ) 1 ( ),

( )

N

N

k N k N

k k N

Q k Q k N
π

π π π

π

∞ −

+

+ + +

 ∞
∞ ∞ ≈ ∞ + − + ∞ 

∞ 
∑ ∑E E  (21) 

where 

1

=0

( ) =1 ( ).
N

N k

k

π π
+

∞ − ∞∑  

The stationary value of the average waiting time ( )Ew ∞  we find by the formula 

 
sv

( )
( ) = .

( )
a

Q
w

eλ

∞

∞

∞

E
E

P
 (22) 
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Here, the expression for the stationary service probability of considered system 

( )

1 2 1

sv 0

=1 =1 =1

1 1

01 1 0 ,

=2 =1

1
( )

1 ( )

1
( 1) ( 1)

1

h h h n

i n ni

i n ia

h i

a i n n i n i

i n

a

e

e a

λ τ

ρ ρ
ρ

− − − −

− −

−


∞ = − +

+ ∞ 

  
+ + − + − −    −   

∑ ∑ ∑

∑ ∑

P
E

ɶ

R R

R R R

 

is obtained by using formula (20) for ( ).τ ∞E  

5. The system M /G/1
θ

β  

Let’s we have the system of M /G/1
n
β
θ

-type and =1,
n
β  =

n
λ λ  for 1 1n h≤ ≤ −  

and = <1,
n
β β = =

n
λ λ λβɶ  for ,n h≥  then the function of the random dropping of 

customer packets applies only when .n h≥  Such a system is denoted by M /G/1.β
θ  

For {1,2, , 1}n h∈ −…  we introduce the notation: =
ni i
R R  ( 1),i ≥  =

ni i
p p  

( 1i ≥ − ), =
ni i

q q  ( 0i ≥ ), = .
n

ρ ρ  

Reasoning as in [11] to investigate the system �M /G,G/1,
θ  we obtain the 

following assertion. 

Theorem 7. If <1,ρɶ  then for the system M /G/1β
θ  we have 

 
1 1

=1 =1

1
( ) = ( 1) .

1

h h

i h i a i h i

i i

M R a e R aτ ρ
ρ

− −

− −

  
∞ + + −   −   

∑ ∑E
ɶ

 (23) 

With the help of Theorem 6 of the paper [12] we obtain formulas for the 

stationary distribution ( )
k

π ∞  ( 0).k ≥  

Theorem 8. If <1,ρɶ  then the stationary distribution of the number of customers 

in the system M /G/1β
θ

 is given by 
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 (24) 
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With the help of (23) we obtain the formula for the stationary service 

probability of the system M /G/1β
θ

 

 
( )

1 1

sv

=1 =1

1 1
( ) ( 1) .

1 ( ) 1

h h

i h i a i h i

i ia

R a e R a
e

ρ
λ τ ρ

− −

− −

  
∞ = + + −   + ∞ −   

∑ ∑P
E ɶ

 (25) 

Consider examples of calculation of the stationary characteristics of the system 

M /G/1,β
θ

 using the formulas (21)-(25) and simulation system GPSS World [13, 14]. 

Let = 2,λ  customers arrive in packets in an amount from one to five, with 

probabilities = 0,2
i
a  (1 5),i≤ ≤  the service time is uniformly distributed on the 

interval [0,2],  hence =1,M  = 3,
a
e  = 6.ρ  Assume that = 0,1,β  then = =

n
λ λɶ  

= 0,2λβ=  for n h≥  and = 0,6.ρɶ  

If = 3,h  then the mean duration of the busy period ( )τ ∞E  found by the formula 

(23) is equal to 265.461. 

The stationary distribution of the number of customers and stationary 

characteristics of the system M /G/1,β
θ  calculated by formulas (21)-(25), are shown 

in Tables 1 and 2. In calculating by the approximate formula (21) we use the value 
 

=10.N  For the sake of comparison, values of the corresponding characteristics, 
 

obtained with the help of GPSS World, are presented. 

Let in the system M /G/1β
θ

 the probability 
n
β  be assigned depending on the 

number n  of customers, that are in the system at the time of arrival of each 

customer packet. We denote such a system by M /G/1.βa
θ  Let’s specify that for the 

system M /G/1βa
θ  the dropping function of customer packets applies only for ,n h≥  

where = <1,
n
β β  = =

n
λ λ λβɶ  for .n h≥  

Table 3 contains a comparison of stationary values of the mean queue length 

for the systems M /G/1β
θ

 and M /G/1,βa
θ

 calculated using GPSS World for = 0.1β  

and different values of .h  If h  is increased, then the mean queue length increases, 
 

and for the same values of h  we have ( ) < ( ).
a
Q Q∞ ∞E E  Here we denote by 

( )
a
Q ∞E  the stationary value of the mean queue length for the system M /G/1.βa

θ
 

A comparison of the stationary values of the mean queue length for the systems 

M /G/1β
θ

 and M /G/1,βa
θ

 computed by means of GPSS World for = 5h  and different 

values of ,β  is shown in Table 4. If β  is increased, then the mean queue length 

increases, and for the same values of β  we have ( ) < ( ).
a
Q Q∞ ∞E E  

 

 

 



Y. Zhernovyi, B. Kopytko, K. Zhernovyi 174

Table 1 

Stationary distributions of the number of customers in the system M /G/1β
θ

 for h = 3 

Number of customers (k) 0 1 2 3  4  5  

π
k 
(∞) 0.00188 0.00578  0.02213 0.05977 0.06648 0.07142 

π
k 
(∞) (GPSS World, t = 106) 0.00180 0.00561  0.02153 0.05809 0.06541  0.07003 

Number of customers (k) 6 7  8  9  10  ⋯  

π
k 
(∞) 0.07384 0.07368 0.07024 0.06668 0.06210 ⋯  

π
k 
(∞) (GPSS World, t = 106) 0.07320 0.07292 0.07043 0.06646 0.06233 ⋯  

Table 2 

Stationary characteristics of the system M /G/1β
θ

 for h = 3 

Characteristic EQ(∞) Ew(∞) P
sv

(∞) 

Analytical value 9.778 9.797 0.166 

Value according to GPSS World, t = 105 9.749 9.768 0.166 

Table 3 

Stationary values of the mean queue length for the systems M /G/1
θ

β  and M /G/1
a

θ

β
 

for β = 0.1 and different values of h, computed by means of GPSS World (t = 105) 

h 3 5 7 10 15 20 30 100 

EQ(∞) 9.749 11.839 13.519 16.586 21.587 26.589 36.585 106.584 

EQ
a 
(∞) 5.971 7.895 9.902 12.912 17.913 22.912 32.911 102.889 

Table 4 

Stationary values of the mean queue length for the systems M /G/1
θ

β  and M /G/1
a

θ

β
 

for h = 5 and different values of β, computed by means of GPSS World (t = 2·105) 

β 0 0.001 0.01 0.1 0.15 0.155 

EQ(∞) 8.635 8.669 8.752 11.713 26.027 36.755 

EQ
a 
(∞) 4.796 4.802 4.918 7.860 23.463 33.996 

Conclusions 

In this paper the formulas, convenient for numerical implementation, for the 

stationary characteristics of the queuing systems M
θ
/G/1/m and M

θ
/G/1 with the 

function of a random dropping of customers have been received. The considered 

examples confirm that the use of the dropping function is a simple and effective 

way to provide the required values of the queueing system characteristics. 
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