DIFFERENTIATION AND INTEGRATION BY USING MATRIX INVERSION

Dagmara Matlak, Jarostaw Matlak, Damian Stota, Roman Wituła

Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
roman.witula@polsl.pl

Abstract

In the paper certain examples of applications of the matrix inverses for generating and calculating the integrals are presented.

Keywords: matrix inverse, integrals, generalized McLaurin's formula

Introduction

The first part of our discussion concerns the linear mappings defined on the finite-dimensional space of solutions of the following system of differential equations

$$
\left\{\begin{array}{c}
f_{1}^{\prime}=a_{1,1} f_{1}+\cdots+a_{1, n} f_{n} \tag{1}\\
f_{2}^{\prime}=a_{2,1} f_{1}+\cdots+a_{2, n} f_{n} \\
\vdots \\
f_{n}^{\prime}=a_{n, 1} f_{1}+\cdots+a_{n, n} f_{n}
\end{array}\right.
$$

Suppose that functions $g_{1}, g_{2}, \ldots, g_{n}$ form the solution of the above system of equations and matrix $A=\left[a_{i, j}\right]_{n \times n}$ of system (1) is nonsingular. Let us consider the linear mapping T of the linear space of solutions $\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{T}$ of system (1) onto itself defined in the following way:

$$
T\left(\begin{array}{c}
f_{1} \tag{2}\\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1}^{\prime} \\
\vdots \\
f_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
a_{1,1} f_{1}+\cdots+a_{1, n} f_{n} \\
\vdots \\
a_{n, 1} f_{1}+\cdots+a_{n, n} f_{n}
\end{array}\right)=\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \vdots & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right]\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)=A\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right) .
$$

Matrix A is nonsingular, so there exists its inverse A^{-1}. In particular, the following equality occurs:

$$
T\left(A^{-1}\left(\begin{array}{c}
g_{1} \tag{3}\\
\vdots \\
g_{n}
\end{array}\right)\right)=A A^{-1}\left(\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right)
$$

Therefore, if $A^{-1}\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{n}\end{array}\right)=\left(\begin{array}{c}G_{1} \\ \vdots \\ G_{n}\end{array}\right)$, then functions G_{i} are the primitive functions of $g_{i}(i=1,2, \ldots, n)$.

The current article is inspired by Swartz's paper [1] where the author gives some simple examples of using this procedure, among others, for generating the integrals of functions $h_{1}=\mathrm{e}^{a x} \sin b x, h_{2}=e^{a x} \cos b x$, for which he obtained the formula (the integration constants are omitted and this rule will oblige henceforward):

$$
\binom{\int h_{1} d x}{\int h_{2} d x}=\left[\begin{array}{cc}
a & -b \tag{4}\\
b & a
\end{array}\right]\binom{h_{1}}{h_{2}}=\frac{e^{a x}}{a^{2}+b^{2}}\binom{a \sin b x-b \cos b x}{b \sin b x+a \cos b x} .
$$

1. Generalization of Swartz's example

Let us start from the generalization of the example mentioned above. Let us take the functions

$$
\begin{array}{ll}
g_{1}(x)=\cosh a x \sin b x, & g_{2}(x)=\cosh a x \cos b x, \\
g_{3}(x)=\sinh a x \cos b x, & g_{4}(x)=\sinh a x \sin b x . \tag{5}
\end{array}
$$

Note that the differentiation operator for these functions is of the form

$$
T\left(\begin{array}{l}
g_{1} \tag{6}\\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right)=\left(\begin{array}{l}
g_{1}^{\prime} \\
g_{2}^{\prime} \\
g_{3}^{\prime} \\
g_{4}^{\prime}
\end{array}\right)=\left[\begin{array}{cccc}
0 & b & 0 & a \\
-b & 0 & a & 0 \\
0 & a & 0 & -b \\
a & 0 & b & 0
\end{array}\right]\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right) .
$$

If $a b \neq 0$, then the inverse of matrix of operator T has the form

$$
A^{-1}=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cccc}
0 & -b & 0 & a \tag{7}\\
b & 0 & a & 0 \\
0 & a & 0 & b \\
a & 0 & -b & 0
\end{array}\right] .
$$

Now we can easily integrate functions g_{i}, e.g.

$$
\int g_{1}(x) d x=\frac{-b g_{2}(x)+a g_{4}(x)}{a^{2}+b^{2}} .
$$

2. Integrals of $\sin ^{\boldsymbol{n}} \boldsymbol{x}$ for odd \boldsymbol{n}

Consider the second derivatives of functions $g(x)=\sin ^{n} x, n \geq 2$. We have

$$
\begin{equation*}
\left(\sin ^{n} x\right)^{\prime \prime}=\left(n \sin ^{n-1} x \cos x\right)^{\prime}=n(n-1) \sin ^{n-2} x-n^{2} \sin ^{n} x . \tag{8}
\end{equation*}
$$

Of course for $n=1$ there is $(\sin x)^{\prime \prime}=-\sin x$. Thus we can write the second derivative operator for the odd powers of function $\sin x$, from 1 to odd k, in the following matrix form:

$$
\begin{gather*}
A_{k}\left(\begin{array}{c}
\sin x \\
\sin ^{3} x \\
\vdots \\
\sin ^{k} x
\end{array}\right)=\left(\begin{array}{c}
(\sin x)^{\prime \prime} \\
\left(\sin ^{3} x\right)^{\prime \prime} \\
\vdots \\
\left(\sin ^{k} x\right)^{\prime \prime}
\end{array}\right)=\left(\begin{array}{c}
-\sin x \\
6 \sin x-9 \sin ^{3} x \\
\vdots \\
k(k-1) \sin ^{k-2} x-k^{2} \sin ^{k} x
\end{array}\right)= \tag{9}\\
=\left[\begin{array}{cccc}
-1^{2} & 0 & \cdots & 0 \\
3 \cdot 2 & -3^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\vdots \\
0 & 0 & \cdots & k(k-1) \\
\hline & -k^{2}
\end{array}\right]\left(\begin{array}{c}
\sin x \\
\sin ^{3} x \\
\vdots \\
\sin ^{k} x
\end{array}\right) .
\end{gather*}
$$

The determinant of the obtained matrix is equal to: $\operatorname{det} A_{k}=(-1)^{\frac{k+1}{2}}(k!!)^{2} \neq 0$, $k \in N$. The inverse matrix is of the form

$$
\begin{equation*}
A_{k}^{-1}=\left[a_{i, j}\right]_{\frac{k+1}{2} \times \frac{k+1}{2}}, \tag{10}
\end{equation*}
$$

where

$$
a_{i, j}=\left\{\begin{array}{cl}
0, & i<j, \tag{11}\\
-\frac{1}{(2 i-1)^{2}}, & i=j, \\
-\frac{(n-1)!!}{n!!} \frac{1}{(2 i-1)} \frac{(2 i-3)!!}{(2 i-2)!!}, & i>j .
\end{array}\right.
$$

We can deduce that for odd n there occurs (with respect to the linear element):

$$
\begin{equation*}
\int^{2} \sin ^{n} x d x=-\frac{(n-1)!!}{n!!} \sum_{i=0}^{(n-1) / 2} \frac{1}{2 i+1} \frac{(2 i-1)!!}{(2 i)!!} \sin ^{2 i+1} x \tag{12}
\end{equation*}
$$

where $\int^{2} f(x) d x:=\int\left(\int f(x) d x\right) d x$. For example, we get

$$
\begin{equation*}
\int^{2} \sin ^{5} x d x=-\frac{8}{15} \sin x-\frac{4}{45} \sin ^{3} x-\frac{1}{25} \sin ^{5} x . \tag{13}
\end{equation*}
$$

We note that from (12) by differentiating we obtain (see [2, 3]):

$$
\begin{equation*}
\int \sin ^{n} x d x=-\frac{(n-1)!!}{n!!} \cos x \sum_{i=0}^{(n-1) / 2} \frac{(2 i-1)!!}{(2 i)!!} \sin ^{2 i} x . \tag{14}
\end{equation*}
$$

For example, we have

$$
\int \sin ^{5} x d x=-\frac{8}{15} \cos x\left(1+\frac{1}{2} \sin x+\frac{3}{8} \sin ^{4} x\right)
$$

3. The case of the even powers of $\sin x$

Consider functions of the form

$$
\begin{equation*}
g_{n}(x)=\sin ^{n} x-\frac{n-1}{n} \sin ^{n-2} x \tag{15}
\end{equation*}
$$

for $n=2,4,6, \ldots$. Acting on the vector $\left(\begin{array}{c}g_{2}(x) \\ g_{4}(x) \\ \vdots \\ g_{k}(x)\end{array}\right)$, where k is even, with the second derivative operator, like it was done in equation (9), we get the following transformation matrix:

$$
\begin{gather*}
B_{k}\left(\begin{array}{c}
g_{2}(x) \\
g_{4}(x) \\
\vdots \\
g_{k}(x)
\end{array}\right)=\left(\begin{array}{c}
g_{2}(x)^{\prime \prime} \\
g_{4}(x)^{\prime \prime} \\
\vdots \\
g_{k}(x)^{\prime \prime}
\end{array}\right)= \\
=\left[\begin{array}{cccc}
-2^{2} & 0 & \ldots & 0 \\
2^{2} \cdot 3 / 4 & -4^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & (k-2)^{2}(k-1) / k \\
0 & -k^{2}
\end{array}\right]\left(\begin{array}{c}
g_{2}(x) \\
g_{4}(x) \\
\vdots \\
g_{k}(x)
\end{array}\right) . \tag{16}
\end{gather*}
$$

The above matrix is invertible and its inversion is of the form
where

$$
\begin{gather*}
B_{k}^{-1}=\left[b_{i, j}\right]_{\frac{k}{2} \times \frac{k}{2}}, \tag{17}\\
b_{i, j}=\left\{\begin{array}{cc}
0, & i<j, \\
-\frac{1}{(2 i)^{2}}, & i=j, \\
-\frac{1}{(2 i)^{2}} \frac{(2 i-1)!!}{(2 j-1)!!} \frac{(2 j)!!}{(2 i)!!}, & i>j
\end{array}\right. \tag{18}
\end{gather*}
$$

Therefore for even n we get the formula (exact to the linear element):

$$
\begin{align*}
\int^{2} g_{n}(x) d x= & -\frac{(n-1)!!}{n!n^{2}} \sum_{i=1}^{n / 2} \frac{(2 i)!!}{(2 i-1)!!}\left(\sin ^{2 i} x-\frac{2 i-1}{2 i} \sin ^{2 i-2} x\right) \\
= & -\frac{(n-1)!!}{n!n^{2}}\left(\frac{n!!}{(n-1)!!} \sin ^{n} x-1+\right. \\
& \left.+\sum_{i=1}^{n / 2-1} \sin ^{2 i} x\left[\frac{(2 i)!!}{(2 i-1)!!}-\frac{(2 i+2)!!(2 i+1)}{(2 i+1)!!} \frac{(2 i+2)}{}\right]\right) \tag{19}\\
= & \frac{(n-1)!!}{n!n^{2}}-\frac{1}{n^{2}} \sin ^{n} x=-\frac{1}{n^{2}} \sin ^{n} x,
\end{align*}
$$

which implies the following integral identity

$$
\begin{gather*}
\int^{2} \sin ^{n} x d x=\frac{(n-1)!!}{n!!}\left(\int^{2} d x+\sum_{k=1}^{n / 2} \frac{(2 k)!!}{(2 k-1)!!} \int^{2} g_{2 k}(x) d x\right) \\
=\frac{(n-1)!!}{n!!}\left(\frac{x^{2}}{2}-\sum_{k=1}^{n / 2} \frac{(2 k)!!}{(2 k-1)!(2 k)^{2}} \sin ^{2 k} x\right) . \tag{20}
\end{gather*}
$$

Hence, by differentiating we get (see [2, 3]):

$$
\begin{equation*}
\int \sin ^{n} x d x=\frac{(n-1)!!}{n!!}\left(x-(\cos x) \sum_{k=1}^{n / 2} \frac{(2 k-2)!!}{(2 k-1)!!} \sin ^{2 k-1} x\right) \tag{21}
\end{equation*}
$$

For example, we obtain

$$
\begin{equation*}
\int \sin ^{n} x d x=\frac{15}{48}\left(x-\cos x\left(\sin x+\frac{2}{3} \sin ^{3} x+\frac{6}{15} \sin ^{5} x\right)\right) \tag{22}
\end{equation*}
$$

4. Integral of $\tan ^{\boldsymbol{n}} \boldsymbol{x}$

Let V be the linear space of sequences $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ of differentiable functions $f_{n}:(a, b) \rightarrow R$. Let $\mathbb{A}: V \rightarrow V$ be a linear operator satisfying equation

$$
\left(\begin{array}{c}
(\tan x)^{\prime} \tag{23}\\
\left(\tan ^{2} x\right)^{\prime} \\
\left(\tan ^{3} x\right)^{\prime} \\
\vdots
\end{array}\right)=\mathbb{A}\left(\begin{array}{c}
1 \\
\tan x \\
\tan ^{2} x \\
\vdots
\end{array}\right)
$$

If \mathbb{A} is represented by infinite matrix A, then from (23) matrix A has the form

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & \vdots \tag{24}\\
0 & 2 & 0 & 2 & 0 & \vdots \\
0 & 0 & 3 & 0 & 3 & \vdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] .
$$

It is easy to show that

$$
A^{-1}=\left[\begin{array}{cccccc}
1 & 0 & -\frac{1}{3} & 0 & 0 & \vdots \tag{25}\\
0 & \frac{1}{2} & 0 & -\frac{1}{4} & 0 & \vdots \\
0 & 0 & \frac{1}{3} & 0 & -\frac{1}{5} & \vdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] .
$$

However, matrix A^{-1} does not represent the inverse operator \mathbb{A}^{-1}, since the following relations hold

$$
\left(\begin{array}{c}
(\tan x)^{\prime} \tag{26}\\
\left(\tan ^{2} x\right)^{\prime} \\
\left(\tan ^{3} x\right)^{\prime} \\
\vdots
\end{array}\right)=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & \vdots \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & \vdots \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & \vdots \\
\cdots & \cdots
\end{array}\right]\left(\begin{array}{c}
1 \\
\tan x \\
\tan ^{2} x \\
\vdots
\end{array}\right)
$$

resulting from the formula

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{1}{n+1} \tan ^{n+1} x-\frac{1}{n+3} \tan ^{n+3} x\right)=\tan ^{n} x-\tan ^{n+4} x \tag{27}
\end{equation*}
$$

Moreover, we get from this, after summing over powers in the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and by uniform convergence (see [4]), that

$$
\begin{equation*}
\tan ^{n} x=\frac{d}{d x} \sum_{k=0}^{\infty}\left(\frac{1}{n+4 k+1} \tan ^{n+4 k+1} x-\frac{1}{n+4 k+3} \tan ^{n+4 k+3} x\right) \tag{28}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
\int_{0}^{x} \tan ^{n} y d y & =\sum_{k=0}^{\infty}\left(\frac{1}{n+4 k+1} \tan ^{n+4 k+1} x-\frac{1}{n+4 k+3} \tan ^{n+4 k+3} x\right) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{n+2 k+1} \tan ^{n+2 k+1} x \tag{29}
\end{align*}
$$

for every $x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $n=0,1,2, \ldots$.
From formula (28) we also get the matrix form $I(\mathbb{A})$ of operator \mathbb{A}^{-1}, i.e. the inverse operator of operator \mathbb{A} (under assumption of its existence):

$$
I(\mathbb{A})=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \tag{30}\\
0 & \frac{1}{2} & 0 & 0 & 0 & \cdots \\
-\frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & \cdots \\
0 & -\frac{1}{4} & 0 & \frac{1}{4} & 0 & \cdots \\
\frac{1}{5} & 0 & -\frac{1}{5} & 0 & \frac{1}{5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Formula (29) is our main analytic result in this section. Why do we think so? Because, as we show now, this formula is a generalization of the classical MacLaurin's formulae for $\ln (x+1)$, i.e.

$$
\begin{equation*}
\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \tag{31}
\end{equation*}
$$

for $-1<x \leq 1$, found independently by Nicolaus Mercator and Saint-Vincent (see sections 10-9 and 10-10 in [5] and page 387 in [6]), and for $\arctan x$, i.e.

$$
\begin{equation*}
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots \tag{32}
\end{equation*}
$$

for $-1<x \leq 1$, which is known as the Gregory series.

This connection should not be surprising because of the known complex relation (see [7]):

$$
\begin{equation*}
\arctan Z=\frac{1}{2} \ln \left(\frac{i+z}{i-z}\right) \tag{33}
\end{equation*}
$$

where $z / i \in \mathbb{C} \backslash(-\infty,-1] \cup[1, \infty)$ and where the principal branch of the logarithm is under consideration. On the cuts we have

$$
\begin{equation*}
\arctan (i y)= \pm \frac{\pi}{2}+\frac{i}{2} \ln \left(\frac{y+1}{y-1}\right) \tag{34}
\end{equation*}
$$

for $y \in(-\infty,-1) \cup(1, \infty)$ and where the upper/lower sign corresponds to the right/left side of the set determining y. More precisely, the connection between the arctan function and log function is obvious and the section concerns the real and imaginary parts of $\arctan z$, since we have

$$
\begin{equation*}
\arctan z=\frac{1}{2} \arctan \left(\frac{2 x}{1-x^{2}-y^{2}}\right)+\frac{1}{4} i \ln \left(\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}\right), \tag{35}
\end{equation*}
$$

where $z=x+i y,|z|<1$. First, from equation (29) for $n=1$ we get

$$
\begin{equation*}
-\ln \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2(k+1)} \tan ^{2(k+1)} x \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
\ln \cos (\arctan \sqrt{x})=\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-x)^{k}}{k} \tag{37}
\end{equation*}
$$

which by (31) implies the well known identity (since $\cos \alpha=\frac{1}{\sqrt{1+\tan ^{2} \alpha}}$ for $\alpha \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$):

$$
\begin{equation*}
\ln \cos (\arctan \sqrt{x})=-\frac{1}{2} \ln (x+1) \tag{38}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sqrt{x+1} \cos (\arctan x) \equiv 1 \tag{39}
\end{equation*}
$$

for every $x \in[0,1]$.
But this formula holds for every $x \geq 0$ since $\cos \alpha=\frac{1}{\sqrt{1+\tan ^{2} \alpha}}$ for every $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. In other words, formula (37) is equivalent to (31). For $n=0$ from (29) we get

$$
\begin{equation*}
\frac{\arctan x}{x}=\sum_{k=0}^{\infty} \frac{\left(-x^{2}\right)^{k}}{2 k+1} \tag{40}
\end{equation*}
$$

which implies (32). Hence, for $x=1$ we obtain

$$
\begin{equation*}
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \tag{41}
\end{equation*}
$$

That is the classical Gregory-Leibniz-Nilakantha's formula (see [8]). Generalizations of the Gregory power series (32) are discussed in papers [9] and [10].

As seen from equation (29), the values of integrals $\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ for $n \geq 2$ are the translations of numbers $\int_{0}^{\frac{\pi}{4}} \tan x d x$ or $\int_{0}^{\frac{\pi}{4}} d x$, depending on parity of n. For even n we have

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x=\int_{0}^{\frac{\pi}{4}} d x-\sum_{k=0}^{(n-2) / 2} \frac{(-1)^{k}}{2 k+1}=\frac{\pi}{4}-\sum_{k=0}^{(n-2) / 2} \frac{(-1)^{k}}{2 k+1} \tag{42}
\end{equation*}
$$

whereas for odd n we get

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x=\int_{0}^{\frac{\pi}{4}} \tan x d x-\sum_{k=1}^{(n-1) / 2} \frac{(-1)^{k}}{2 k}=\frac{1}{2}\left(\ln 2-\sum_{k=1}^{(n-1) / 2} \frac{(-1)^{k}}{2 k}\right) \tag{43}
\end{equation*}
$$

5. Final remark

Some other applications of the matrix obtained by n-times differentiation of product functions and composition functions are discussed in paper [11]. In turn, in paper [12] the technique of the inverse matrix was used for calculating the integral $\int \sec ^{2 n+1} x d x$, similarly as in the present study. The obtained formulae were used there for generating the trigonometric identities.

References

[1] Swartz W., Integration by matrix inversion, Amer. Math. Monthly 1958, 65, 282-283.
[2] Prudnikov A.P., Bryczkov J.A., Mariczev O.J., Integrals and Series, Elementary Functions, Vol. 1, Nauka Press, Moscov 1986 (in Russian).
[3] Prudnikov A.P., Bryczkov J.A., Mariczev O.J., Integrals and Series, Complements Sections, Vol. 2, Nauka Press, Moscow 1986 (in Russian).
[4] Kołodziej W., Mathematical Analysis, PWN, Warsaw 1979 (in Polish).
[5] Eves H., An Introduction to the History of Mathematics, Holt, Rinehart and Winston, New York 1969.
[6] Boyer C. (revised by Merzbach U.), A History of Mathematics, Wiley, New York 1991.
[7] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W., NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge 2010.
[8] Wituła R., Number π, its History and Influence on Mathematical Creativeness, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
[9] Gawrońska N., Słota D., Wituła R., Zielonka A., Some generalizations of Gregory’s power series and their applications, J. Appl. Math. Comput. Mech. 2013, 12(3), 79-91.
[10] Wituła R., Hetmaniok E., Pleszczyński M., Słota D., Generalized Gregory’s series (in review).
[11] Redheffer R., Induced transformations of the derivative - vector, Amer. Math. Monthly 1976, 83, 255-259.
[12] Wituła R., Matlak D., Matlak J., Słota D., Use of matrices in evaluation of $\int \sec ^{2 n+1} x d x$ in review.

