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Abstract. The article presents some properties of method used for balancing the unsustain-

able production and consumption model, defined in our previous article. This model 

assumes that the total demand exceeds supply at a fixed period of time. 

 

When we analyzed the consumption model we didn’t find the case in which 

the supply exceeds the demand. Unsustainable production and consumption model 

has been defined in the previous articles [1, 2].  

This model contains 2≥n contractors, in which there are 1≥m  there are 

producers and 1≥− mn consumers. Demand and supply for a specified product at 

a fixed period of time are presented in a form of vector ( )
n

ppp ,,,

21
…=pppp , meet-

ing the following requirements: 

a) 0〉⇒≤
i
pmi  for each ,ni ≤  

b) 01 〈⇒≤≤+
i
pnim  for each ,ni ≤  

c) .ppp
n
0

21
〈+++ …  

In the article [3] an iterative algorithm balancing this model has been presented 

(model (1-5)). 

In this article, certain properties of this algorithm will be presented. 
 

Statement 1. For each ( )0,sNk∈  there are equalities  

a) ( ) ,

k
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b) ( ) ,

k

n

k
Se,pp =−  

where 
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 k
k
SS  local (global) correction of k  row for the unadjusted pppp  vector. The proof 

of this statement was given in the previous article [2]. 

 

Statement 2. For each ( )osNk ,∈  there is equality ( ) 11
re,arS
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Proof. From the statement 1 and algorithm definition we get 

( ) ( ) ( ) ( ) ( ) ( ) =+−=+−=+
+++
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++    Q.E.D. 

The above statement informs us, that the total number of concession by all con-

tractors, measured from the first iteration, increased by the proposed change in 

demand or supply in the next iterative step, is constant. This size is equal to the 

difference left to balance the model at the starting position.  

 

The algorithm could, therefore, lead to balance the model in the first iteration, 

if the contractors had adequate possibilities to make concessions.  

 
Statement 3. For each ( )o,sNk∈  there is inequality 

n,,,iupp
ii

k

i
…21=+≤ for  

Proof (induction due to )k  

a) .1=k  From the algorithm’s definition we get 
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For 1
Ni∉  the thesis is clear. For 1

Ni∈  defined from set s

N  results 
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b) Assume that the statement is true for mk =  that 
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c) Let 1+= mk  
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For 
j

mj
Ni

≤

∪∈  the statement is true from the induction assumption because 
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 (see [3] Lemma 1). 

 

For 
1+

∈

m

Ni  the thesis is clear. 
 

Case when 1+
∈
m

Ni  has been left to prove. From the algorithm’s definition the 
11
NNN
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…  inclusion is shown together with the following equalities: 
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From the set’s s

N definition it results that for each 1+
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Thus, from the above equality we get 
ii

m

i
upp +≤    Q.E.D. 

 

This statement informs us that at every iteration step, each contractor did not 

exceed the limit of his production and consumption capacity.  
 

Statement 4. For each ( )o,sNk∈  there is 0≥
k
r . 

 

Proof: From the algorithm’s definition (see [3]) results that ( )
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Therefore, for n,,,i …21=  there is inequality 2121 −−−−
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The above statement shows that at every iteration step, supply of the certain 

good does not exceed demand. 

From the k

i
a  definition (see [3]) results that for n,,,i …21=  and for each 

( )osNk ,∈  there is 0≥
k

i
a . Hence, for the statement 4 we get 

 

Statement 5. For each ( )osNk ,∈ , 0
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It means that at every iteration step, each contractor, in fact, makes a conces-

sion, the producer does not reduce the production and the consumer does not 

reduce his demand. 
 

Statement 6. For any ( )osNk ,∈  there is inequality 
1
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Proof. From statement 2 results, that for any ( )osNk ,∈  there is 
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The above statement means that at every iteration step the total amount of con-

cessions made by all contractors, from the 1
st
 to k-

th
 iteration does not exceed the 

amount needed to balance the model.  
 

Statement 7. For each ( )sNk∈  there is kk
rr 〈〈
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Proof. From the statement 5 results that for each ni ≤  and for each ( )sNk∈  there 
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In a sum 
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Summing up we get 
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Because 0≥
k
r  (statement 4) and ( )sNk∈  then .r

k
0≠  Therefore .r

k
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Q.E.D. 

 

The above statement shows that at every iteration step the mount left to balance 

the model is smaller than the previous one. 
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