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Abstract. This paper describes the use of one of the methods to generate the impulse peri-

odic process, called the rectangularization method, based on the Mikusiński-Sikorski distri-

bution approach, to investigate the influence of impulse excitation approximation accuracy 

on chaotic properties of solutions of the Duffing’s equation.The evolution of these solutions 

has been illustrated with Poincaré map graphs. 

Introduction 

The use of impulse waveform in numerical modeling of dynamic systems is 

associated with numerous technical difficulties. There are many known and usable 

ways to generate such wave forms (e.g. [1]), but using them in a specific numerical 

simulation usually causes destabilization of the computation processor a significant 

decrease in its efficiency, which is associated with the local fast function variability. 

This paper describes the use of one of the methods to generate impulse periodic 

process, called the rectangularization method, based on the Mikusiński-Sikorski 

distribution approach [2], to investigate the influence of impulse excitation approx-

imation accuracy on chaotic properties of solutions of Duffing’s equation. 

1. Impulse process generating 

The following function sequence has been used to generate approximations 

of the impulse exciting process: 

 ����� = � ⋅ sgn(cos��) ⋅ |cos��|��  (1) 

where ω and A are positive real numbers. θn denotes the monotonically decreasing 

convergent real numbers sequence where 

Please cite this article as:
Ewa Ładyga, Władysław Pękała, Evolution of Duffing's equation solution obtained with approximated impulse process
excitation, Scientific Research of the Institute of Mathematics and Computer Science, 2012, Volume 11, Issue 3, pages
99-104.
The website: http://www.amcm.pcz.pl/



E. Ładyga, W. Pękała 

 

100

 0 ≤ �� ≤ 1 (2) 

and 

 lim
�→�

�� = 0 (3) 

The evolution of the waveform graph shape depending on θn values has been 

shown in Figure 1. Smaller values of θn correspond to more rectangular shape of 

the function graph. 
 

 
Fig. 1. The evolution of the waveform graph shape 

2. Dynamical system with impulse excitation 

A simple nonlinear dynamical system has been taken into account to observe 

dependence of chaotic properties of solution trajectory on approximation exactness 

of impulse excitation expressed by θn values. Equation of the system (Duffing’s 

equation) has the form [3-5]: 

 	′′ + 
	′ + �	 + �	� = ��(�) (4) 

where 	 = 	(�). 
Chaotic properties of this system were investigated and have been elaborated 

in detail in [3]. 

Initial conditions and equation parameters have been fixed at the following 

values: 

 	�0� = 0							��0� = 0 

 
 = 0,1				� = 0				� = 1 
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3. Computation procedure 

The calculations were performed using the Runge-Kutta-Fehlberg procedure 

of numerical integration of ordinary differential equations. Excitation parameters 

values θn i A have been changed according to variants described in Table 1 and 

Table 2. Different variants of the calculations have been marked by letters and 

digital symbols simultaneously (see: Tables 1 and 2). 

Table 1 

Variant A B C D E F G 

ϑn =
 

1 0,9 0,8 0,7 0,65 0,6 0,58 

Table 2 

Variant 01 02 03 04 05 06 07 08 09 10 

A = 9,94 10,0 10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 

 

Variant 11 12 13 14 15 16 17 18 19 

A = 10,9 11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,64 

 

The phase trajectories obtained by solving the equation (4) have been trans-

formed with Poincaré mapping [4], so each calculation variant has been finished 

with a point characteristic of the solution (Poincaré map) which is an attractor of 

system (4) in phase space. 

4. Results 

Poincaré map graphs obtained as a result of computation have been presented 

in pictures of Figure 2. Each graph has been drawn in the same scale of state 

coordinates (	,	�): 

 (	,	�) ∈ 〈1, 5〉 × 〈−10, 10〉 (6) 

and has been denoted with a corresponding variant mark. 

There are no Poincaré map graphs for variants A nor B in the Figure 2 because 

all of these solutions are chaotic and have similar characteristics. Also, the graphs 

of variants 05-07 are similar to 04 and 08, variants 10-12 - to 09 and 13, variants 

15-18 - to 14 and 19, therefore they have been omitted in the paper. 

The Poincaré map graphs shown in Figure 2 determine the boundary line in the 

parameter space [A, θn] between chaotic solutions area and the periodic one. The 

marks identified the computation variants vs. parameters values has been collected 

in Table 3. Cells containing the variant marks indicate chaotic solution, cells with 

„o” letter indicate periodic solution. 
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Fig. 2. The Poincaré maps 

The lines bounding chaotic and periodic solution areasin the parameter space 

[A, θn] have been shown explicitely in Figure 3. The space between lines (1) 

and (2) denotes solutions which should be investigated using a smaller sampling 

step of parameters values. 

C 01 D 01 E 01 F 01 G 01

C 02 D 02 E 02 F 02 G 02

C 03 D 03 E 03 F 03

C 04 D 04 E 04

C 08 D 08 E 08

C 09 D 09
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Table 3 

A 
ϑn

 

0,80 0,70 0,65 0,60 0,58 0,57 

  9,94 C 01 D 01 E 01 F 01 G 01 o 

10,00 C 02 D 02 E 02 F 02 G 02 o 

10,10 C 03 D 03 E 03 F 03 o o 

10,20 C 04 D 04 E 04 o o o 

10,60 C 08 D 08 E 08 o o o 

10,70 C 09 D 09 o o o o 

11,10 C 13 D 13 o o o o 

11,20 C 14 o o o o o 

11,64 C 19 o o o o o 

 

 
Fig. 3. The chaotic-periodic areas boundary lines 

Conclusions 

Computations described in this paper show the essential influence of the im-

pulse waveform approximation accuracy on the dynamic system behavior. In par-

ticular, decreasing of parameter θn value ie. increasing of impulse waveform  

approximation accuracy reduces the chaotic properties of system (4) solutions - 

they are going to be periodic ones. It depends strongly on excitation amplitude 

magnitude A. 
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