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Abstract. In this paper we present a new approach to solving a one-dimensional, one-phase 

Stefan problem. The proposed method is based on choosing (a) suitable curvilinear  space 

coordinate/s for the heat-flow equation and the finite difference method. In the final part of 

this paper, examples of numerical calculations are shown. 

Introduction 

Moving boundary problems in which the boundary of the domain is not known 

occur in subjects such as heat flow, hydrology, solute transport or molecular diffu-

sion. Moving boundaries are associated with time dependent problems and 

the position of the boundary has to be determined as a function of time. Moving 

boundary problems are often called Stefan problems, with reference to the work 

of J. Stefan, who investigated the melting of the polar ice cap [1-3]. 

In the literature there are many well-known methods for solving the Stefan prob- 

lem. One of them, proposed by Schniewind, is based on the concept that moving 

boundary moves “from node to node” [4, 5]. A similar approach, where the moving 

boundary always moves from one grid point to another, was applied by Douglas 

and Gallie in [6]. These are the methods with variable time step. Murray and Landis 

suggested a different approach [7]. Their method uses a variable space grid with 

constant number of space intervals between fixed and moving boundary. Another 

front-tracking method was proposed by Crank [8]. In his method, the moving 

boundary will usually be located between two neighbouring grid points. The solu-

tion is determined by using a modified finite-difference method which incorporates 

unequal space intervals near moving boundary. One of the most popular methods 

of solving moving boundary problems is fixing the moving boundary at the same 

grid point or line for all time by a suitable coordinate transformation [2, 8]. 

Our aim is to construct a numerical scheme which allows the use of a constant 

both the time and the space steps. In this approach we expect the boundary to  

move along a straight line. 

The paper is organized as follows. In the first section we formulate one-dimen-

sional, one-phase Stefan problem in curvilinear coordinates. Numerical scheme 
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is given in Section 2. Then, two examples of the simulations are presented 

in Section 3. 

1. Mathematical formulation of the problem 

Consider a simple version of the Stefan problem describing melting of a semi-

infinite sheet: 
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where K is conductivity, u is temperature, ρ is density, c is specific heat and L is 

the latent heat required to melt the given material. Assuming constant thermal val-

ues and using a simple scaling: 
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we can formulate the above Stefan problem in non-dimensional variables for finite 

sheet lx ≤≤0 , where l is some standard length and Lcu /
0

=Λ is dimensionless 

Stefan number: 
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The analytical solution obtained by Neumann [2, 3] for the one-dimensional 

Stefan problem shows that the liquid/solid interface grows as the square root of 
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time, namely .~)(
~

ττS  By introducing space coordinates 2
X=ξ  to the system 

(5)-(7) we obtain relation ττ ~)(S . Using standard operations we transform sys-

tem (5)-(7)  for function ),(
~

τXU into the following system for ),( τξU  
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where the boundary now moves along a straight line .)( ττ pS =  

2. Numerical scheme 

Now we present a numerical scheme for the system (8)-(10). By jiU ,

 we denote 

the values of temperature in grid points ),( τξ ∆∆ ji , where ji ,...,1,0:= ; 

nj ,...,1,0:= , n/1=∆ξ  with an integer n. To calculate the time step τ∆  we use 

formula: 

 1)( −=∆ npτ  (11) 

where parameter p is determined by solving the following transcendental equation: 
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To approximate derivatives from formula (8) we use the difference quotients and 

transform the equation (8) to the following discrete form 
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For 2=j  and 1=i , value of  function 
12
U is determined from formula 
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When 2>j  then system of equations (13) can be written in the matrix form 

 BUA =⋅ , (15) 

where 
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3. Numerical examples 

In this section, two examples of melting processes of ice and aluminum are 

considered. We apply the numerical scheme formulated above, perform calcula-

tions in curvilinear coordinates (ξ,τ) and then convert the results to standard Carte-

sian coordinates (x,t). 

Example 3.1. In the calculations we assume the following values of parameters for 

the melting process of ice: K,15.273=
B
u  K,15.298

0
=u  m1.0=l , 

K),J/(kg9.4189=c  J/kg,333400=L  ,kg/m1000
3

=ρ  K).W/(m5664.0=K  

The calculation results are presented in graphs in Figures 1 and 2. 
 

  
 Fig. 1. The calculated temperature  Fig. 2.  The comparison of numerical 

 distribution in liquid region results with the exact solution 

 for Example 3.1 and n = 300 for Example 3.1  and n = 300 
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Example 3.2. In the second example the  melting process of aluminum is consid-

ered. The simulation assumes the following values of parameters: K,931=
B
u  

K,1073
0
=u  m,1.0=l  K),J/(kg44.1130=c  J/kg,396000=L  

,kg/m2380 3
=ρ  K).W/(m215=K  The calculation results are presented in 

graphs in Figures 3 and 4. 

 

  
 Fig. 3.  The calculated temperature  Fig. 4.  The comparison of numerical 

 distribution in liquid region results with the exact solution 

 for Example 3.2and n = 300 for Example 3.2 and n = 300 

Conclusions 

In this paper we presented a new approach to solve the one-phase 1D Stefan 

problem. The introduced method is based on the finite difference method for 

the heat-flow equation in new space coordinates. This approach allows us to use 

a rectangular grid with the constant time and space steps. We compared numerical 

results obtained for 300 steps with the exact solution and received average relative 

error: 0.126% for Example 3.1 and 0.207% for Example 3.2 respectively. 

Let us note that classical moving boundary  problems were extensively studied 

in literature (compare [1-10] and the references given therein). Most of these 

problems can only be solved using numerical methods. The motivation of the 

proposed approach is its further application to fractional versions of the Stefan 

problem [11-14]. In the literature certain exact solutions to some simple cases of 

this problem were developed. However, in principle, they depend on parameters 

hidden in complicated function equations which are very difficult to solve. Similar 

to the  standard theory of heat or solute transfer, the general fractional moving 

boundary problems could be solved only using numerical approach. However, the 

standard numerical schemes developed for classical Stefan problems are not 

effective in the case of models including fractional derivatives which are non-local 

operators. The constructed numerical scheme simplifies the grid and seems more 

suitable to model complicated non-local operators appearing in fractional moving 
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boundary problems. The extension and application of the proposed method to the 

fractional case  will be the subject of our further investigations. 
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