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Abstract. Bioheat transfer in biological tissue is descriliiydthe Pennes equation, while
the change of blood temperature along the artey in is described by ordinary
differential equations, at the same time the caenteent blood flow is taken into account.
The coupling of these equations results from thendary conditions given by the blood
vessel walls. There are two methods used heredier @o calculate the temperatures along
the blood vessels and across biological tissuesdliee the Pennes equation, the Multiple
Reciprocity Boundary Element Method (MRBEM) is dpgl It should be pointed out that
this method does not require discretisation ofititerior of the domain. The second method
used in this paper is the Finite Difference Metlie®M) and it is applied to calculate the
temperatures along the blood vessels, and it canmies the previous one. It is important
to note that the diameter of an artery is smalhentof a vein, which results from the
physiological characteristics of these blood vesdalthe final part of the paper, the results
of the computations are shown and conclusionsaareulated.

1. Governing equations

Biological tissue is heated by a pair of blood e¢s$ocated at the central part
of the tissue cylinder, as shown in Figure 1.

Fig. 1. Pair of blood vessels (Krogh-type tissukncler)
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The steady state temperature figl(k;,%,,2) in domainQ shown in Figure 1 is
described by the Pennes equation [1, 2]

(%:%,2)@Q B T(4%,2) Goealls T(uX2)] Qz O (1)
where A [W/(mK)] is the tissue thermal conductivifls is the blood temperature,
Gg[m°blood/s x1/(m tissue is the perfusion coefficient,c,[J/(Mm*K)] is the
specific heat of blood referred to the volume @d[W/m?®] is the metabolic heat

source. Equation (1) is supplemented by the follgwiboundary condition on the
external surface of the considered cylinder

(XL,XZ,Z)EF 1:q(X11X21Z;:_ AR T(X11X2’z) C (2)

and the Robin boundary conditions (contact surfametsveen tissue and blood
vessels):

(%%, ) 510X, Xp,zF = ARD T (X, X,,Z) @[T XX 02) Ty ,2)]
(prz’z)l:r 3:q(X1'X212;:_ A T(X11X2’E) a3[|' (erz’z') Tg 3(2)]

where Tg,, T;; are the blood temperatures inside of the vein anigry,
respectively,a,, a; are the heat transfer coefficients for the veid artery and
n =[cosa, cosf]is the unit outward vector nhormal fo

The second set of equations corresponding to timdblessels temperatures are
in the form of ordinary differential equations @;

®3)

dTg,(2) _ 20, _ Qgrmet

) = B 1) Tas(2)] + @
dTs;3(2) _ 20, _ Qpmet

8 =2 1) ~Tl] + ®

where w,, w; refer to the blood velocity values in the vein amtery, T ,, T ; are
the mean temperatures on the walls of the veinatety. Assuming the Peclet
number for the network of blood vessels, we canutate the blood velocity in the
vein and artery, this means,, W,.

The above equations are supplemented by initiadlidons: Tg, (0) = Tg,, and
Ta3(0) =Tgz, Where Z is the length of the considered cylinder.

2. Solution method and idea of computation

The cross section of the considered domain is showigure 2.
The multiple reciprocity boundary element methodgpleads to the following
integral equation corresponding to equation (1):
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BT + 3 S j [a0V; € xdr =
©

0

GgCs
Z( jfT(x)z (& x)dr—Qz( j [z7€ xa
1=0 T

where ¢ is the observation poing O (0,1]. Coefficient B(£) is dependent on the
location of the source point. All the points lochtiaside of Q haveB(é) =1

If point & belongs to any boundaiy, then B(¢) = 8 /21 ,where S is the internal
angle the boundary makes at source péint

Fig. 2. Cross section of vessels

FunctionsV, (£, X), Z (£,X) are defined as follows [5, 6]:

V.*(f,x)=$r2'[mn;l+a} ()

wherer is the distance between observation pdirdandx, and

A=1A= A'-l, 1=1,2,3. (8)
B, =0, B, =i2(p*‘1 + B,_lj, l=123.. 9)
42\ |
* _i 21-2 _ E
Z (&,x)= an (A 2 (A Inr +B,D (10)

where

d= (Xl —fl) cosa, +(X2 _52) cosa, (11)

while cosz;,cosa, are the directional cosines to outward vector n.
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In order to solve equation (6), we need to perfdisaretisation of the boundary
(c.f. Fig. 4). Let us divide boundafy into N elementsl’;, j=123...,N. Then the

integral in equation (6) can be replaced by thesswfnthe integrals over these
elements, leading to the following equation:

B(f)T(f)+Z[ jCBI Y [V (&, xdr, =
i=1r;
| (12)

Z[ BCBI [ 2Tz (& xodr, —QZ[ BCBI Z [Z24(& podr,

I= r;i=t =,

Since the boundary elements used in this papeofaee parabolic type (c.f.
Figure 3), the following is true:

% = Npxt’ + N+ Noxy
X = (%, %) T j:{ P ' (13)

— p r S
* = I\IpXZ + NrXZ + NSXZ

Thus, the parabolic approximation for the tempematand heat flux is as
follows:

T= Npr + N, T +NT
X . (14)
q=Npd, + N0 +Ngg
where
N =1 N =@ -, v, =1 a5)
Ts
I
I
I
T,
I
Tp I |
| S
| X
xP X!

Fig. 3. Parabolic boundary element
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The geometric representation of parabolic elentnt can be determined and
it is equal to [7]

dx ¥ (dx, )’
RS

where:

d_xlzzn__lxp_znxlr +2”T+1 s

d 2 7 (17)
- +

B2 22 o + 2L

il 2 2

Let us now make the following substitutions:
g) = [ V(€' dr, (18)
h= Irj Z; (& Xdr 19)

For parabolic boundary elements, the integralsegmtesl in equation (12) are
equal to:

[ a0V (&' xdr; =gf'a, +gila, +gia, (20)

]

J T09ZI (€ xdr; =hPT, T, KT (21)
[, 21 podr; =+ + by (22)

where:

| (1 o i
07 =5 [N (620N N+ Nt N N+ Nk (23)

| o
07 = - [NV (660 N N+ NGNGB NG+ N e (24)

| (1 ol
gi? =Ej—1NS\4 (fill.’gé’prlp +NrX:{ +Nsxls’NpX2p+NrX£ +N5X§)jr| (25)

*

| (1 S
hijpI :E-[—leZ| ( ll’gé’prlp + erlr + Nsxls’przp +NrX£ +NsX§)dn (26)
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= [ N2 (L NP + N N NGXE N+ N (27)

| 1 o
= [N (6N N+ N N+ NG + N e (28)

Using the above substitutes, let us rewrite theegtmg equation, bearing in
mind that the following numeration of the boundandes is assume#l:= 1, 2...
K. Then fori = 1, 2...K, we obtain the system of equations:

© GGy | &
BT +Z(—3 Bj Zgilqu
1=0 k=1

(29)
© I -1 g

5[5 B 2555 g

1=0 k=1 1=1 k=1

where for single nodes being the end of boundawyehtl”; and the beginning of
boundary element,,, we have:

Oi =Gk + O (30)

hilk = hlgk + hlpk]l+l

and for the central nodes of the elements:

Gix = Oik (31)
hl —
k — Mk
Using the above equations we can rewrite equafiehds follows:

K K K
ZGiqu :ZHika +ZF’ik, i=123...K (32)
k=1 k=1 k=1

where the following substitutions have been assumed

o |
G =Z(%j O (33)

1=0

- |
Hix :Z(%j hilk i £k (34)

1=0
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=2 (35)

o |
Pe = _%Z(—GZCB j hi* (36)

If we assumeK; nodes are located at bounddry, K, nodes are located &t,,

and the remaining nodds; are at boundary ;, then we can rewrite equation (32)
in following manner:

Kl K1+K2 K

ZGiqu + ZGiqu + ZGiqu =

k=1 k:K1+1 k:K1+K2+1 (37)
K1+K2

K1 K K
ZHika+ ZHika+ ZHika+ZF)ik
k=1 k=1

k=K7+1 k=K1+Ko+1

where i=1,2 ... K.
We can now incorporate equations (2) and (3) indoabove equation, and then we
have:

K1+K2 K
ZGikaza-k —Tg2(2) + ZGikas(Tk —Tes(2) =
k:K1+1 k:K1+K2+1 (38)
Kl K1+K2 K K
ZHika+ ZHika+ ZHika+ZF)ik
k=1 k=Kp+1 k=Kq+Ko+1 k=1

If we take the unknowns to the left hand side, @ @write the above equation in
the following manner:

Kl K1+K2 K
_ZHika + Z(azGik —Hy )T + Z(aaGik —Hiy )T =
k=1 k:Kl+1 k:K1+K2+1 (39)
K1+K> K K
ZazGikTsz(Z) + zaseikTss(Z) + z Py
k=K1+l k=K1+K2+1 k=1

We can see from the equation thBf,(2), Tz5(z2) needs to be known and the
solution of this equation are temperatures Tk attthundary nodes.
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The next step is to determine the temperatureilligion throughout the tissue,
using the following equation:

K K K
T :ZHika _ZGiqu +2Pik (40)
k=1 k=1 k=1

The equations for blood temperature along the \®gsd. equations (4) and
(5)) are solved using the finite difference metdd7]. The application of this
method requires the following approximation:

Tg,(2+A2) - Tg,
Az

=A[T,,(2-Ts, (2] + B, (41)

T (z+A2)-Tg,
Az

==AT,:(2) -Ts3(2)] - B, (42)

After modifications, we get:

Toa(2+02) = (1~ AT, ,(2) + AT, 2) +B,lx (43)
Taa(Z2+ A2) = (1 + ALZ)T55(2) — AT, 5(2) +Bsle (44)
where:
45
A= pg=Cma o_p3 “o
WGR T WG
(46)

1 & 18
T.(2 =_ZTi’ T3(2) :_ZT
K2 i=1 K3 i=1
The initial temperature values for the vein an@mriare knownTg, (0) =Tg,,
and Tg;(0) =Tz, We assume an arbitrary temperature at the begjrofithe vein
vessel (z = 0)Tg, (0) =Tgpp-
Putting z=0 in (43) and (44), we can calculafg,(Az), Tg;(A2) that will feed
into equation (39). From this system of equatidhg, boundary temperature in
I,,I; for z=Az is determined and then the mean temperatureseofahbsels

walls are computed using equation (46).
Having that, we can calculafB;, (2Az), Ty5(2A2) for cross sectior?Az. This

process of numerical calculations continues umtik Z. We then check the
calculations of the vein blood temperatum= 0) against boundary condition

Tg,(0) =Tg,e- If the values are not similar, we change the ‘emperature for
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z = 0 and perform the calculations again untiltthe temperatures (arbitrary with
the calculated one) are of similar values.

3. Entry values

The following entry data have been assumed: ragiumtery R, =0.0002m,
radius of veinR; =0.0003m, radius of tissue cylindegR=0.0015m, distance be-
tween the two blood vessel® =0.0003 rfsee Figure 2), length of cylinder
Z =005m, thermal conductivity of tissuel =05 W/mKyolumetric specific
heat of blood ¢z =381600Q)/nTK, inlet arterial blood temperature is
Tg,0=375°C, inlet venous blood temperature Tg;, = 370°C, perfusion coeffi-
cient is G; =0.0005425 1/, metabolic heat sources at tissue and at veseels a
Q. = 245W/m?, Qane =100W/m*,  heat  transfer  coefficients

a, =5000W/(m°K), a,=33333W/(M K) and the blood velocities are
w, = 003m/s, wy = 002m/s.

4. Results of computations

The boundary at each cross section has been diiite80 parabolic boundary
elements with the following node division&; =120 for boundary;, K, =24
for boundaryl’,, K;=36 for boundary[l;. In the interior of the tissue, 240 inter-
nal nodes have been distinguished (see Fig. 4).
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Fig. 4. Discretisation of boundary and distributafinternal nodes
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The results of the computations with respect ta fooss sections of tempera-
ture distribution in the tissue are plotted in Fa&gi5-8. In Figure 9, the changes of
blood temperature along the artery-vein axes asgnmted.

Fig. 5. Temperature distribution (z = 0 m) FigTémperature distribution (z = 0.01 m)

Fig. 7. Temperature distribution (z = 0.02 m) FgTemperature distribution (z = 0.03 m)
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Fig. 9. Temperature distribution in artery and vein
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Conclusions

A countercurrent vessels model has been establisiietthe system of three
differential equations describing the temperatigkd fin the tissue, artery and vein.
The problem has been solved by using the multipbdgprocity boundary element
method (for tissue domain) and finite differencetmd (for vessels domain). The
solution model presented here takes into accoufereint radiuses of artery and
vein. It is a very important factor in calculatitmperatures as the radius of a vein
is at least 2-3 times larger than that of an arfi@ky

The algorithm used here to provide the solution magm complex on the
numerical computation level, but then, the matheahtmodel proposed here
forms a good approximation of the actual thermalcpss in the human vessel-
tissue domain. Using the algorithm proposed, ipassible to calculate different
parameters describing the heat exchange betweedistiie and vessels, the main
one being the influence of the metabolic heat sown the thermal processes
occurring in the considered domain.
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