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Abstract. The exact solution to a problem of the thermally induced vibration of  
a homogeneous annular plate is presented. The considered plate is subjected to the activity 
of a point heat source, which moves with a constant angular velocity on the plate surface 
along a trajectory. The thermal moment is derived on the basis of a temperature field in the 
plate. The solution to the vibration problem is obtained by using  Green’s function method. 

Introduction 

The thermally induced vibration of beams and plates is of great interest to engi-
neers due to its practical importance in mechanical, chemical, aeronautical and 
nuclear power industries. Several authors have studied the problem of the thermally 
induced vibration of plates [1-7]. 

In paper [1], the equation of a thermally excited vibration of a circular plate is 
derived. The plate forced by a temperature field varying harmonically in time was 
considered. The heat conduction problem was solved by means of the finite Hankel 
transformation and the solution was found in the form of a series. In paper [2], the 
thermally induced vibrations of simply supported and clamped circular plates were 
studied. In this analysis, it is assumed that the distribution of temperature is linear 
through the thickness and along the radius. To solve this problem, the authors used 
an analytical method (the method of separation of variables) and a numerical meth-
od (the finite element method). The non-linear response of a thermally loaded iso-
tropic plate was investigated by Haider, Arafat and Nayfeh [3]. The plate was  
excited externally by a harmonic force near the primary resonance. The authors 
considered the in-plane thermal load to be axisymmetric. In paper [4], the authors 
investigated an inverse thermoelastic problem in a thin isotropic circular plate. The 
authors determined the temperature distribution and thermal deflection on the 
curved surface of the plate by employing an integral transform. The results were 
obtained in terms of series of Bessel’s functions. The thermally induced vibration 
of a circular and annular plate is presented in paper [7]. The plate was subjected to 
a sinusoidally varying heat flux on one surface and the other is thermally insulated. 
Applying the theory to circular and annular plates, the deflection, the stress distri-
bution and the frequency response of the plates were calculated numerically. In 
paper [8], the problem of the thermally induced vibration of a circular plate was 
solved by using Green’s function method.  
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In this paper, an analytical solution to the problem of the thermally induced vi-
bration of an annular plate is presented. The thermal moment caused by the tem-
perature distribution on the thin annular plate is determined and displacements of 
the plate induced by the thermal moment are analyzed theoretically. The solution to 
the problem is obtained by using a time-dependent Green’s function.  

1. Heat conduction problem 

An annular isotropic plate of uniform thickness h with inner radius a and outer 
radius b (Fig. 1) is considered. This plate is heated by a heat source which moves 
on the plate surface along a concentric circular trajectory at radius r0  with constant 
angular velocity ω. 

 

 
Fig. 1. Schema of annular plate with heat source 

The temperature of the plate is governed by the heat conduction equation which 
in cylindrical coordinates is as follows 
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represents the heat generation term. The heat generation term is assumed in the 
form: 
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where θ  characterises the stream of the heat, δ( ) is the Dirac delta function, (t)ϕ  
is the function describing the movement of the heat source 

 ( )t tφ ω=  (3) 

An analytical form of the temperature distribution in the considered plate has 
been given in paper [9] as a solution of equation (1) with the following initial and 
boundary conditions: 
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where 0α  is the heat transfer coefficient, 0T  is the known temperature of  
the surrounding medium. The temperature for T0 = 0 is expressed as (derivation is 
presented in paper [9]) 
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where ( )22
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 is a G-Meijer function [10]. 

2. Problem of thermally induced vibration of annular plate 

The thermally induced vibration of the considered plate is governed by the  
biharmonic differential equation [8] 
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where D is the flexural stiffness, µ is the mass per unit area of the plate, w(r,Φ,t) is 
the displacement of the middle surface of the plate at point (r,Φ) at time t, and MT  
denotes the thermal moment. The thermal moment appears as a result of a tempera-
ture field in the plate and it is defined as [8]  
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The presented study deals with an annular plate with simply supported edges, 
which means that the following boundary conditions are satisfied 
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Moreover, the zero initial conditions are assumed 
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Substituting (8) for equation (15), we obtain the thermal moment in the form: 
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The solution to problem (14), (16), (17) in an analytical form is obtained by  
using the properties of Green’s function, which is a solution of differential equation 
[11] 
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and satisfies the zero initial and homogeneous boundary conditions analogous to 
conditions (16), (17). The solution to vibration problem (14), (16), (17) can be 
expressed as  
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3. Green’s function  

The GF for the considered vibration problem may be written in the form of  
a series 
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Substituting series (18) for equation (16) and using the expansion [8] 
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the differential equation for the functions ( )trgm ,  is obtained  
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Next, using (18) in boundary and initial conditions (13), (14), we have 
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The solution to initial-boundary problem (23)-(26) can be presented in the form:  
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where  Qm n (r)  are the eigenfunctions of the following boundary problem:  
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The general solution of differential equation (28) can be written in the form: 
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Thermally induced vibration of an annular plate 113

where mm YJ ,  are the Bessel functions of order m, and mm KI ,  are the modified 
Bessel functions of order m. Substituting function (31) for boundary conditions 
(29), (30), we obtain a system of homogeneous equations 
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where ( )( )ν−−= 11mmpm . 

A non-trivial solution of system (32) exists for these mnλ , which satisfy  
equation 
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This equation can be written in the form: 
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The roots of equation (34) are determined numerically. The eigenfunctions corre-
sponding to the roots are derived by using the solution of system (32) in equation 
(31). After transformations, the eigenfunctions can be presented in the form:  
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Note that functions mnR  satisfy the orthogonality condition 
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Taking into account (23), (24) and using orthogonality condition (31) in equa-
tions (20) and (22), we obtain the differential equation 
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and initial conditions 
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The solution to initial problem (33), (34) has the form 
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 Finally, on the basis of equations (18), (23) Green’s function for the simply 
supported circular plate can be written in the following form  
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Summary 

In this paper, the problem of the transverse vibration of an annular plate induced 
by a mobile heat source was considered. Formulation of the problem was based on 
the differential equations of heat conduction and transverse vibration of the plate, 
which were complemented by suitable initial and boundary conditions. The tem-
perature distribution and transverse vibration of the annular plate in an analytical 
form were obtained by using the properties of Green’s function. 
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