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Abstract. In this paper Lagrange multiplier formalism has been used to find a solution to 
a free transverse vibrations problem of stepped beams. The beams have been circumscribed 
according to the Timoshenko theory. The sample numerical calculations for a cantilever 
two-stepped beam have been carried out to illustrate the validity and accuracy of the pre-
sent method. 

Introduction 

Free vibrations of a non-uniform beam according to the Bernoulli-Euler theory 
have been the subject of research of many authors [1-6]. However, the classical 
Bernoulli-Euler theory of flexural behaviour of an elastic beam is inadequate for 
the vibration of higher modes or for short beams. In this case, the effect of shear 
deformation and rotary inertia should be taken into account. Therefore Timoshenko 
[7, 8] modified the classical Bernoulli-Euler beam theory with the above-
-considered influence. Among the papers devoted to vibrations of beams with non-
uniform inertia, cross-section and mass distribution according to the Timoshenko 
theory, publications [9-15] are worth listing.  

In this paper, the free vibrations problem of stepped beams has been formulated 
and solved with the help of Lagrange multiplier formalism [16, 17]. The beams 
have been circumscribed according to Timoshenko theory. Exemplary numerical 
calculations have been carried out and compared to the results of other  
authors. 

1. Formulation and solution of the problem 

Kinetic (Tb) and potential (Vb) energy of a free homogeneous Timoshenko beam 
without additional elements can expressed as [18]:  
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where: y(x,t) is the total deflection of the beam at a point x, ψ(x,t) is the angle of 
rotation due to bending, ρ is the mass density, A(x) is the cross sectional area, I(x) is 
the moment of inertia, E is the modulus of elasticity, G is the shear modulus and k’ 
is a numerical factor depending on the shape of the cross-section.  

Within the pondered theory, displacements y(x,t) and ψ(x,t) can be expressed 
(on basis of the solution of free vibrations beam problem without additional ele-
ments) as: 
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at the same time: Yi(x) and Ψi(x) denote the i-th transverse and rotational vibration-
al mode respectively, ξi(t) are the time functions. 

Substituting equations (3) and (4) into equations (1) and (2), one obtains: 
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where: 
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Considering the vibrations of stepped beams (Fig. 1), the beam can come down 
to a system of N segments. Each segment is described according to the Timoshenko 
theory and has constant parameters ρ, A(x), I(x), E, G and k’.  

In the case of stepped beams consisting of N segments, relationships (3) and (4) 
can be rewritten as: 
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while kinetic (5) and potential (6) energy as: 
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Fig. 1. Scheme of stepped beam 

In formulas (11) and (12), the following denotations have been introduced: 
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In the mathematical model, the joints of all the segments have been realized by 
introducing the constraint functions: 

 ( ) ( )1 1 1 2, 0, 0f y L t y t≡ − =   
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 ( ) ( ) 0,0, 3223 =−≡ tytLyf  
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 …, (15) 

 ( ) ( ) ( ) 0,0,11112 =−≡ −−−− tytLyf NNNN   

 ( ) ( ) ( ) 0,0,1112 =−≡ −−− ttLf NNNN ψψ  



D. Cekus 52 

The Lagrangian for the above complex system has the form: 
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where λr are the Lagrange multipliers, whose numbers depend directly on 
the number of segments.  

Substituting relationships (11), (12), (15) into (16) and using the Lagrange equa-
tion, the system of motion equations can be formulated: 
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The introduced denotations bni,r in (17) represent the i-th translational and rotation-
al vibrational modes of n-th beam segments without additional elements: 
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where: 
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In order to receive the solution of the system of equations (17), the harmonic 
motion has been assumed: 
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By substituting relationships (20) into the equations of motion (17), the values 
of Ani determined in depending on the values of the Lagrange multipliers ampli-
tudes: 
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Inserting relationships (21) into constraint functions (15), the following system 
of equations in the matrix form has been obtained: 

 0=CΛ  (22) 

where: 

 ( )[ ]TNΛΛΛ 11221 ,...,, −−=Λ  (23) 

is the vector of Lagrange multipliers and band matrix C has the form: 
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The sub-matrices on the diagonal have the form: 
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and the sub-matrices above and below the diagonal have the form: 
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Coefficients Cnk,r have been defined as: 
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and they characterize the dynamic properties of separate segments of the beam. 
Equation set (22) yields the eigenvalue equation: 

 det 0=C  (28) 

which enables one to calculate the free vibration frequency values ωi of the system. 

2. Sample results 

In order to check the present method, a numerical program has been worked out 
for a cantilever two-stepped beam (Fig. 2). This combined system can be treated 
like a free-ends beam (in accordance with formulation of the problem) with addi-
tional elements [16, 17]. Therefore matrix (24) has to be modified by introducing 
an additional support against the beam translation and rotation. 

 

 

Fig. 2. A cantilever two-stepped beam 

The numerical calculations have been completed for the following data:  

 b2/b1 = 0.8, L1/L = 2/3, k’ = 5/6, v = 0.3, ii EILA ωρΩ 1
4

1 /= , 2
11

2
1 / LAIr = . 

The first five dimensionless natural frequencies obtained by taking into account 
ten, twenty and thirty terms of coefficients Cnk,r (27) are compared to the results of 
other authors [9, 10, 14] and shown in Table 1. 

On the basis of the carried out numerical calculations, one can state  
that the present method shows good correspondence to the research results of  
other authors, when thirty terms of coefficients Cnk,r have been taken into account. 
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Table 1  

Frequency coefficient of a cantilever two-stepped beam 

r1 Source 
Frequencies 

Ω1 Ω2 Ω3 Ω4 Ω5 

0.0133 

Present 
method 

m = 10 4.096 24.061 62.58 120.563 205.215 

m = 20 3.952 22.846 59.333 115.507 192.861 

m = 30 3.903 22.412 58.214 113.987 188.847 

Reference [9] 3.82 21.35 55.04 107.50 173.62 

Reference [10] 3.8219 21.3540 55.0408 107.4993 173.6322 

Reference [14] 3.8244 21.3546 55.0445 107.5079 173.6228 

Summary 

In this paper, the free vibrations problem of stepped Timoshenko beams has 
been formulated and solved on the basis of Lagrange multiplier formalism. In the 
consideration, the beam has been treated like a free-free beam without additional 
elements. Only during examination of the cantilever stepped beam was the system 
modified by the addition of two elements substituting the clamp.  

The presented sample numerical calculations compared to the results of other 
authors indicate a good agreement. However, if the results have to be received with 
the demanded precision, then the number of terms of coefficients Cnk,r have to be 
appropriately selected. 
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