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Abstract. In this paper we consider an ordinary fractional differential equation containing 
a composition of left and right fractional derivatives. This type of equation is known in 
literature as the fractional Euler-Lagrange equation. We considered this equation with mul-
tipoint boundary conditions. We proposed a numerical scheme using the finite difference 
method. In the final part of the paper, examples of the solutions are shown. 

Introduction 

In this study the fractional Euler-Lagrange equation (FELE) is considered. This 
type of equations is obtained when the minimum action principle and fractional 
integration by parts rule are applied. The fractional operator in this equation con-
tains left and right derivatives simultaneously. It should be noted that many authors 
[1-7] elaborated some forms of the FELE.  

Fractional differential equations appear naturally in a number of fields such as 
physics, mechanics, control theory, electrotechnics, bioengineering, finance theory 
and many other disciplines [8-10]. The important problem is how to find solutions 
of the FELE. Using fixed point theorems [5, 6], one can obtain analytical results 
represented by a series of alternately left and right fractional integrals and therefore 
it is difficult in any practical calculations. On the other hand, in references [11-13] 
we can find a numerical approach to the solution of ordinary differential equations 
with left and right fractional derivatives with the first kind of boundary conditions. 
In our work, we shall present numerical solutions of the FELE with a multipoint 
boundary condition. 

1. Statement of the problem 

We consider the following fractional differential equation of order α ∈  (0, 1) in 
time interval t ∈  [0, b] 

 ( ) ( )0 0C
bD D f t f tα α
− + + λ =  (1) 
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where operators Dα are the left and right fractional derivatives in Riemann- 
-Liouville (2) and Caputo (3) senses defined as [14]: 

 ( ) ( )1
0 0D f t DI f tα −α
+ +=  (2) 

 ( ) ( )1C
b bD f t I D f tα −α
− −= −  (3) 

and operators I α are fractional integrals of order α defined in [14]: 
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The following relation between both definitions (2) and (3) takes place [14]: 
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Eq. (1) is supplemented by the multipoint boundary conditions 
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2. Numerical solution 

Now we present numerical schemes for eq. (1). We introduce the homogenous 
grid of nodes 

 0 1 2 10 , , /i i N it t t t t t b t i t t b N+= < < < < < < < = = ∆ ∆ =… …  (7) 

The value of  function f at the moment of time ti is denoted as fi = f (ti).  
Next, we determine the numerical schemes for both fractional operators occur-

ring in eq. (1). The value of the left Riemman-Liouville derivative (2) (internal 
operator) at point ti can be approximated as [11] 
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where 
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Denoting by ( ) ( )0g t D f t+= α , we can find the discrete form of the composition of 

operators (2) and (3) 
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where 
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Using formulas (8) and (10), we can describe a discrete form of the fractional oper-
ator in eq. (1) 
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Taking into account eq. (1) with multipoint boundary conditions (6), we have  
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where / 1m a t= ∆ −    and x    denotes is the smallest integer not less than x.  

In order to obtain the numerical solution of eq. (1), we need to solve the system of 
algebraic equations (13). If point a does not overlap the node in grid (7) (i.e. the 
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point a lies in time interval (tm, tm+1]), then we use linear interpolation which is 
determined by the third equation in (13). 

3. Examples of computations 

In this section we present the results of the calculations obtained by our numeri-

cal approach.  
 

Example 1. In the example, eq. (1) with parameter λ = 0 is considered. The analyt-
ical solution of eq. (1) with boundary condition f(b = 1) = 1 is given in form  
f(t) = t

α  
[13]. Assuming the boundary condition as f(a = 0.5) = 0.5

α
 we realized the 

numerical calculations for N = {32, 64, 128, 256, 512, 1024} and we determined  
fN the values (i.e. for t = b). Table 1 presents the values of the numerical errors: 
ERR = |(f(b) − fN)|/f(b) for the various values of parameter α. It should be noted that 
the numerical errors decrease with an increasing discretization number N.  

 

Example 2. Here we analysed the case of eq. (1) with parameter λ = −10. We 
simulated the influence of parameter α from the list, α = {0.3, 0.5, 0.7}, on the 
solution. We divided time domain t ∈  [0, 1] into N = 1000 subintervals. Figure 1 
shows the solutions of eq. (1) with boundary conditions f(1) = 1 (left-side) and 
f(0.5) = 1 (right-side). 

Table 1 

Values of numerical errors ERR   

 α = 0.001 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 0.999 

N = 32 1.613·10−5 1.637·10−3 4.989·10−3 7.928·10−3 8.865·10−3 4.928·10−3 6.132·10−5 

N = 64 7.938·10−6 8.006·10−4 2.432·10−3 3.936·10−3 4.619·10−3 2.768·10−3 3.599·10−5 

N = 128 3.937·10−6 3.957·10−4 1.198·10−3 1.961·10−3 2.386·10−3 1.526·10−3 2.067·10−5 

N = 256 1.961·10−6 1.967·10−4 5.937·10−4 9.785·10−4 1.225·10−3 8.292·10−4 1.168·10−5 

N = 512 9.785·10−7 9.802·10−5 2.953·10−4 4.888·10−4 6.253·10−4 4.455·10−4 6.509·10−6 

N = 1024 4.888·10−7 4.892·10−5 1.472·10−4 2.443·10−4 3.180·10−4 2.372·10−4 3.590·10−6 

 

 
Fig. 1. Solutions of eq. (1) with λ = −10 and boundary conditions f(1) = 1 (left-side)  

and f(0.5) = 1 (right-side) for different values of parameter α 
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Example 3. The last example is similar to example 2. We assumed the follow-

ing parameters: α = 0.5, λ = −10, t ∈  [0, 1], N = 1000. Here we determined the 

influence of the changes of boundary conditions on the solution. Figure 2 presents 

the solutions of eq. (1) with boundary conditions: f(1) = {0.5, 1.0, 1.5} (left-side) 

and f(0.5) =  {0.5, 1.0, 1.5} (right-side). 
 

 
Fig. 2. Solutions of eq. (1) with λ = −10, α = 0.5 and variables values of boundary  

conditions at f(1) (left-side) and f(0.5) (right-side) 

Conclusions 

In summary we proposed the FDM for the FELE with multipoint boundary 

conditions. We obtained the FDM scheme which includes one of the boundary 

conditions inside of the considered time domain. This approach offers new possi-

bilities in physical processes modelling. Analysing the plots in this work, we ob-

served the occurrence of oscillation for λ < 0. We also noted that the numerical 

solutions for case λ = 0 are convergent to the analytical one. 
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