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Abstract. We introduce a sequential cellular-automata-like algorithm enabling efficient 
sampling of vast search spaces related to the kinetics of long polymers. As an example, with 
the help of our algorithm we study the movements of linear polymers in the vicinity of a flat 
membrane with holes in it.  

Introduction 

Chain-like structures are common in Nature, and thus they are widely encoun-
tered in biological, physical and technological processes. An important example of 
such processes involves a biopolymer transfer through a cell membrane which is 
vital to virtually all living organisms [1-3]. Polymers are molecules formed with 
a large number of covalently bonded, small repeating units called monomers. Their 
linear lengths are large compared to the molecular diameter, so that polymers are 
seen as long flexible strings. Within one of the possible and useful physical pic-
tures, these strings can be thought of as long chains undergoing a random walk 
composed of steps of fixed step length followed by a random change in direction 
after each step. 

From the physical point of view, polymers being classical systems can be stud-
ied by computer simulation. However, the complexity of possible polymer confor-
mations along with the volume of a solvent make the search space for a hypothe-
tical algorithm huge so that real polymers have to be mapped onto significantly 
simplified models [4-6]. On the other hand, the simplifications of a polymer model 
can be less harmful with respect to the real polymer if the search space viewed by 
an algorithm, appropriate to this given model, may be quickly sampled in a reliable 
manner. 

The aim of this work is to present a numerical tool for the quick analyzing of 
the kinetics of chain-like structures from the statistical point of view. We do that by 
introducing a sequential algorithm built up around probabilistic-cellular-automata 
methodology, i.e. temporal evolution of a polymer within its configuration space is 
drawn with the help of the probabilistic transition rules among accessible polymer 
conformations. The cellular automata philosophy reduces the total number of  
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degrees of freedom of the polymer by restricting the allowed moves to the steps 
alignment with the edges of an underlying lattice. 

Below, we define our algorithm in a rather formal way. As a bridge between 
this abstract approach and the world of statistical physics, we consider the kinetics 
of a polymer lying on the plane perpendicular to the flat membrane. The polymer 
is modelled as a string of identical bares connected by point-like joints. For the 
sake of clarity, we restrict ourselves to the simplest case of a so-called freely- 
-joined chain, i.e. a polymer whose bonds are uncorrelated.  

1. Idea of sequential algorithm introduction - basic definitions  
and assumptions 

In the description of the algorithm, we use terms and denotations, which we de-
fine below. 

An abstract 2D  chain position is a finite sequence { }1 2, , , nc c c=c K  of 2D  

points ( ),i i ic x y=  such that distance d  between any pair of its successive ele-

ments is less than given limit ( )1: , , 1,2, , 1i ig d c c g i n+ < = −K .  

The elements of sequence c  are called segments of the chain. Segment nc  is 

called the head of the chain, while element 1c  is called the tail. Number n  is 

called the length of the chain.  
 

Assumption 1 (discretization of motion space): The chain  moves along 
the integer lattice nodes, i.e. coordinates ( ),i ix y  of the chain segments are integer.  

The movement trajectory is a sequence of consecutive chain positions stored in 
matrix C  whose i -th row is interpreted as a chain position at moment i. Thus ele-
ment ijc  denotes the position of segment j at moment i. 

The movement of the chain consists of a sequence of moves which transforms 
the chain from one position to another.  

Assumption 2 (sequentialization of the move):  Every single move of a chain 
can be sequentialized into a sequence of steps, i.e. moves made sequentially by 
chain segments. A single step may transform given segment jc  only to one of its 

neighbouring nodes, i.e. ( )1,,ij i jd c c g± < . 

The First to move (FTM) segment is the segment which in a given move is 
chosen by the algorithm to make the step as the first from all the chain segments. 
The choice is realized according a given probability distribution defined on the 
chain segments. The distribution will be denoted as FTMD. 

The steps may be influenced by an outer law given by a probability distribution 
defined on the neighbouring nodes. The outer law probability distribution (OLPD) 
may depend on the position of the segment in the motion space. The OLPD reflects 
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the existence of restrictions and constraints imposed on the system from the envi-
ronment as well as by the laws of physics.  

The step made by the FTM segment as well as all the following steps may be 
subject to some addition restrictions connected with the assumed features of the 
chain. These restrictions will be denoted as AFR.  For example, one of such re-
strictions is the upper limit for the distance between the successive segments. This 
restriction assures continuity of chain, and - by assumption - it does not concern 
the FTM segment. Another example of the AFR restrictions may be a requirement 
that in a given node, at most a given number of segments can be placed, etc.  

 

Assumption 3 (chain nature of the move): Every single move of a chain is 
started by only one segment, chosen according to the FTMD. Then all the seg-
ments make their steps sequentially according to the OLPD and the AFR.   

The above assumption allows us to simulate the movement of the described 
chain structure effectively and efficiently.  However, in many practical problems, 
such as biopolymer behaviour inside a living tissue, one should also take into ac-
count some additional constraints connected with the biochemical nature of the 
system. Thus we define additionally the cost connected with chain structure. The 
structure of the chain is defined by the relative mutual positions and related inter-
actions of the segments. The cost of the chain position and its structure is function 
F representing its fitness connected with its structure and/or other external (envi-
ronmental) properties. The lower cost, the better fitness of the chain structure and 
position.  

 

Assumption 4 (acceptance of new chain position): The new position of the 
chain is accepted (by Nature) with a probability depending on its cost.  

 

The above assumptions and ideas are implemented in the following sequential 
algorithm for a chain-like structure movement simulation. 
Step 0. (Initialization) Set the initial (current) chain position ccurr and evaluate its 
current cost function value FC.  
Step 1. (FTM segment selection) According the given FTMD, select FTM segment 
ccurr,f .  
Step 2. (Step choice for FTM segment) According the given OLPD and AFR, select 
the neighbouring node for the next position of  the segment cnew,f.  
Step 3. (Move complement - successive steps of remaining segments)   

To obtain a new chain position, cnew, sequentially choose segments cnew,i, 
1, ,1i f= − K  and draw the neighbouring nodes for their next position according  

the OLPD and AFR. This process is terminated for the first k, k = f − 1,..,1 for 
which the following condition holds: d(ccurr,k,cnew,k+1) < g. If 1k > , then for 

1, ,i k= K  we assume cnew,i = ccurr,i. Next sequentially choose segments ic , 

1, ,i f n= + K  and draw the neighbouring nodes for their next position according 

to the OLPD and AFR. This process is terminated for the first , 1, ,k k f n= + K  for 
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which the following condition holds: d(ccurr,k,cnew,k−1) < g. If k n< , then for 
, ,i k n= K  we assume cnew,i = ccurr,i 

Step 4. (Acceptance of new position)  
Compute the cost of new position FN  and the difference d = FN − FC. If d < 0, 

accept cnew. Alternatively, accept cnew only if random variable U having a uniform 
p.d. on interval [0,1] satisfies ( )U A d≤ . If cnew is accepted, then ccurr is replaced 

by cnew; else ccurr remains as is. 
Step 5. Terminate the algorithm if the stopping criterion is met; else return to 
Step 1.  
Step 6. Return the final position of the chain, its cost and various statistics con-
nected with the simulated movement trajectories. 

 

The nondecreasing real function A(d) that appears in Step 4 of the above algo-
rithm represents the attitude of Nature towards the acceptance of worse states. If 
Nature accepts all states, one may assume A(d) = 1. Otherwise, similarly as in the 
famous Metropolis algorithm, we propose to use function ( ) [ ]exp /A d d T= − , 

where T  is a parameter which may be additionally subject to change during the 
movement process, see e.g. [7].  

2. Example of computations 

To illustrate the possible usage of the introduced algorithm, we consider a sim-
ple example of a chain-like structure passing through a hole in a boundary. Let us 
consider the situation presented in Figure 1. The initial chain position is the fol-
lowing: {(24,2), (25,3), (24,4), (25,5), (24,6), (25,7), (24,8), (25,9), (24,10), 
(25,11), (24,1), (25,13), (24,14), (25,15), (24,16)}. The length of the considered 
chain equals 15n = . In our example, function ( ) 1A d = , and it reflects the fact that 

here the moves of the chain are not dependent on its structure. We also assume that 
the OLPD says that the most probable neighbouring nodes are those in the upper 
right directions, so the chain is expected to move up and right rather than in other 
directions. The FTMD assigns to each segment its probability to be chosen as the 
FTM one proportional to its distance from the tail (the head is the most probable 
segment to move as the FTM). Additionally, we assume the existence of 
a boundary in the motion space. It is given by straight line 20y = . However, in 

this boundary, there is a hole at points ( )30,20  and ( )31,20 , compare Figure 1a. 

Now, let us assume, that we want to study how many moves are required for the 
chain to place the first of its segments into the hole. Obviously, it is a random 
number, but we can estimate it with the help of Monte Carlo simulations. In the 
presented run, this event was realized at move 74, and the chain position at that 
moment is presented in Figure 1b.  
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Fig. 1. Kinetics of chain-like structure: a) initial position of 15-segment length chain;  
b) position after 74 moves - first time a chain segment is placed into hole; c) polymer is 

passing through hole - position after move 122; d) position after move 158 - entire chain 
traversed hole 

Next, it may be interesting in how many moves it takes to get the entire chain 
outside the hole. In the analyzed run, it happened at move 158, and the position is 
presented in Figure 1d. Many other statistical characteristics of the movement pro-
cess as well as the influence of various parameters describing both the chain struc-
ture itself and the distributions involved in the process can be easily examined 
with the help of the presented algorithm. It is worth emphasising that the algorithm 
is very efficient. We have obtained our results with relatively little numerical  
effort, modest memory and CPU resources. The simulations can be even run on 
netbooks. 

Remarks 

We applied our algorithm to a simple freely-joined model of a polymer being 
aware of its serious shortcoming, i.e. the freely-joined model does not take into 
account the interactions among the monomers. Moreover, the interactions appear-
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ing between the monomers and solvent molecules are ignored. We have chosen 
such a simple model only because of the transparency of the algorithm presenta-
tion, e.g. we have not used Assumption 4 and Step 4. Such a drawback, however, 
can be easily overcome by an appropriate account of the monomer-monomer as 
well as monomer-solvent interactions within Assumption 4. Applications of the 
presented algorithm to more realistic polymer models are in progress. 

References 

[1] Meller A., Nivon L., Branton D., Voltage-driven DNA translocations through a nanopores, 
Phys. Rev. Letters 2001, 86,  3435-3438. 

[2] Kantor Y., Kardar M., Anomalous dynamics of forced translocation, Phys. Rev. 2004, E69, 
21806. 

[3] Gershow M., Golovchenko J.A., Recapturing and trapping single molecules with a solid-state 
nanopore, Nature Nanotechnology 2007, 2, 775-779, 2007, doi:10.1038/nnano.381. 

[4] Meller A., Dynamics of polynucleotide transport through nanometre-scale pores, J. Phys.: Con-
dens. Matter 2003, 15, R581-R607. 

[5] van Leeuwen J.M., Drzwiński A., Stochastic lattice models for the dynamics of linear polymers, 
Physics Reports 2009, 475, 53-90,. doi: 10.1016/j.physrep.2009.04.001. 

[6] Drzewiński A., van Leeuwen J.M., Crossover from reptation to Rouse dynamics in the extended 
Rubinstein-Duke model, Phys. Rev. 2007, E77, 031802, doi: 10.1103/PhysRevE.77.031802. 

[7] Spall J.C., Introduction to Stochastic Search and Optimization; Estimation, Simulation, and 
Control, A John Wiley & Sons. Inc., Publication, 2003. 

 


