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Abstract. The paper  deals with the stationary problems of heat conduction in a periodically 
layered half-space with cylindrical hole. The lateral surface of the hole is assumed to be 
kept at zero temperature or be thermally isolated. The boundary plane with circular hole is 
heated by a given temperature. The problems are solved within the framework of the ho-
mogenized model with microlocal parameters [1, 2]. The influences of geometrical and 
thermal parameters of the composite constituents on temperature and heat flux distributions 
are investigated. 

Introduction 

The analysis of temperature and heat flux distributions in laminated composites 
has been a subject of increasing importance, due to the expanding use of such ma-
terials in advanced engineering applications. Moreover, many rocks and soils are 
stratified and clearly piece-wise homogeneous. These are various metamorphic 
rods with fabrics having parallel arrangements of flat minerals (shale/sandstone, 
slate/ sandstone, varved clay, flotation wastes). 

This paper is devoted to the analysis of axisymmetrical stationary problems of 
heat conduction for a periodic two-layered half-space with a cylindrical hole. The 
hole is located perpendicular to the layering and two cases of boundary conditions 
on the lateral surface of hole is considered: (1°) zero temperature (Problem 1), (2°) 
zero radial component of heat flux (Problem 2). Moreover, the perfect thermal 
bonding between the layers is taken into account. The boundary plane with a circle 
cut-out is assumed to be kept in a given temperature. The considered problem is 
determined within the framework of the classical descriptions by partial differen-
tial equations with discontinuous and rapidly oscillating coefficients. The compli-
ance of continuity conditions on interfaces is complicated for analytical and nu-
merical approaches, so the problem will be solved by using the approximated 
model with microlocal parameters [1, 2]. In the case of periodically two-layered 
composites the governing equations of the homogenized model are expressed by 

Please cite this article as:
Stanisław J. Matysiak, Dariusz M. Perkowski, On heat conduction in a periodically layered space with a vertical
cylindrical hole, Scientific Research of the Institute of Mathematics and Computer Science, 2010, Volume 9, Issue 1,
pages 131-145.
The website: http://www.amcm.pcz.pl/



S.J. Matysiak, D.M. Perkowski 132

unknown macro-temperature connected with averaged temperature and certain 
extra unknown called the microlocal parameter. It is important that the continuity 
conditions on interfaces are fulfilled within the homogenized model. This model 
has been applied in many thermal and mechanical problems of periodically strati-
fied composites, (see, for a partial review, [3, 4]). The considered boundary value 
problems will be solved by using the Weber-Orr integral transforms (see, [5-8]). 
The exact solutions within the framework of the homogenized model obtained in 
integral forms will be analyzed numerically and the results will be presented in the 
form of figures. Especially, the influence of geometrical and thermal properties of 
the composite constituents on the temperature and heat flux distributions will be 
investigated. 

1. Formulations and solutions of the problems 

Consider a rigid, periodically layered half-space with a cylindrical hole normal 
to the layering. The constituents of the body are assumed to be isotropic and ho-
mogeneous heat conductors. Let a  be the radius of hole, l1 l2 be the thicknesses of 
the subsequent layers, l = l 1+l 2 be the thickness of the fundamental lamina (the 
repeated unit). Let K1, K2 denote the coefficients of heat conductivities of the sub-
sequent layers. Let ( ), ,r zφ  be the cylindrical coordinate system with the axis z 

being the symmetry axis of the hole, and 0,z r a= ≥  represents the upper bounda-

ry surface of the body (Fig. 1).  
 

 
Fig. 1 The scheme of stratified half-space 

The boundary 0,z r a= ≥  is assumed to be kept at given temperature ( )0 rθ , 

and the lateral surface of the hole is kept at zero temperature (Problem 1) or is 
thermally insulated (Problem 2). The ideal thermal contact between the layers be-
ing constituents of the composite is taken into account. The mentioned above con-
tinuity conditions on the interfaces lead to some difficulty in analytical and numer-
ical approaches. For this reason the homogenized model with microlocal parame-
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ters is suitable to the approximated formulation of the considered problem. We 
briefly recall only the governing relations of this model for the axisymmetric case 
(for a more detailed treatment see the following papers [1, 2, 9-12]). The tempera-
ture ( ),T r z  and the temperature gradient is approximated as follows [12]: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , , , ,

, , , ,
, , ,
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where ( ),r zθ  is an unknown function (called the macro-temperature), ( ),r zγ  

stands for the unknown thermal micro-parameter, and ( )h z  is a given l  periodic 

function taken in the form 
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where 
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η =  (3) 

The governing equations of the homogenized model with microlocal parameters 
for the stationary axially symmetric case take the form [5]: 
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By using the algebraic equation (4)2 the microlocal parameter γ  can be elimi-

nated, what it leads to the equation for unknown macro-temperature: 
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where 
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The heat flux vector ( ) ( ), , 1,2j r z j =q  in the layer of j-th kind has the form: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , .j j j j j
r z r j zr z q r z q r z q r z K q r z K

r z

θ θ∗∂ ∂ = = = −  ∂ ∂
q  (8) 

The equation (6) together with (8) stand for the governing relations of the sta-
tionary axisymmetrical heat conduction problems formulated within the frame-
work of the homogenized model. From (8) it is seen that the continuity conditions 
on interfaces are satisfied.  

The considered problems are described by the following boundary conditions 
and the regularity condition in infinity: 
 
Problem (1) 

 ( ) ( )0, 0 ,r rθ θ= for r a>  (9) 

 ( ), 0 , for z 0,a zθ = >  (10) 

 ( )lim , 0 , for 0,
z

r z rθ
→∞

= ≥  (11) 

and 
Problem (2) 

 ( ) ( )0, 0 ,r rθ θ= for  r a>  (12) 

 ( ), 0 , for  z 0,a z
r

θ∂ = >
∂

 (13) 

 ( )lim , 0 , for 0,
z

r z rθ
→∞

= ≥  (14) 

where ( )0 rθ  is given function satisfies the condition ( )0 dr .
a

r rθ
∞

< ∞∫  

To solve the above formulated problems. the Weber-Orr integral transforms 
will be employed [5-8]. For this aim introduce the following notations 

, 
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where 

 ( ) ( ) ( ) ( ) ( ), , 0, 0;1,C r a J r Y a J a Y rµν µ ν ν µξ ξ ξ ξ ξ ξ µ ν= − = =  (16) 

and  

( ) ( ),J Yµ µ⋅ ⋅  are Bessel's and Neumann's functions, respectively. 

The inverse transforms take the form [5-8]: 
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The important relations from the point of view of the considered problems are 
the following expressions [5-8]: 
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The equations (19) and boundary conditions (10) and (13) lead to the applica-
tion of Weber-Orr transform W00[⋅] in the case of Problem 1 and transform  
W01[⋅] in the case of Problem 2, respectively. Form (19), (10), (13) and (6) it  
follows that 
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By using equation (21), boundary conditions (9), (11) and relation (17) we ar-
rive at the solution to Problem 1 in the form: 
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where 
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From equations (22), (8) and the following relation [8]: 
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we obtain the components of  heat fluxes in the layer of j-th kind as follows 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

00 2
02 2

0 00

10 2
02 2

0 00

,
, exp dξ ,

,
, exp dξ , 1,2.

j
z

j
r j

C r a K
q r z K K z

J a Y a K

C r a K
q r z K z j

J a Y a K

ξ ξ
ξ θ ξ ξ

ξ ξ

ξ ξ
ξ θ ξ ξ

ξ ξ

∞
∗

∗

∞

∗

 
= − − 

+   

 
= − = 

+   

∫

∫

�
�

�

 (25) 

In the case of Problem 2 the solution takes the following form 
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Using equations (26), (8) and (24) we obtain: 
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The equations (22) and (25) stands for the solution to Problem 1 in the integral 
forms. The equations (26) and (28) are the solution of Problem 2. The obtained 
results for some case of boundary temperature will be analyzed numerically. 

2. Special cases and numerical results 

As a special case the distributions of temperature and heat fluxes in the periodi-
cally layered half-space with cylindrical hole caused by a constant temperature 0ϑ  
on the ring , 0b r c z≤ ≤ =  will be considered. So, the function ( )0 rθ  in boundary 
conditions (9) and (12) is assumed in the form 

 ( ) ( ) ( )0 0r H r b H c rθ ϑ= − −  (29) 

where 0ϑ  is given constant, H(⋅) is the Heaviside step function, and b, c are given 
constants such that a b c< < . 

The function ( )0 rθ  defined by (29) will be taken into account in the solutions 
to Problem 1 and Problem 2. 
 
Problem 1 

Substituting (29) into (23) and using (16) as well as the following relations 
[13]: 
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The solution of Problem 1 for the considered case is determined by equations 
(22), (25) and (31) in the integral form. The integrals will be calculated numerical-
ly. For this aim the following dimensionless variables and constants are intro-
duced: 
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Using (32) and (31) form equations (22) and (25) it follows that 
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The integrals in equations (33)-(35) were calculated numerically and the results 
are presented in the forms of figures.  
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Fig. 2. The dimensionless temperature 
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The dimensionless temperature 0/θ ϑ  is presented in Figures 2a, b, c (the isother-
mal curves) for 1.5, 2.0, 0.5b c η= = =

� �
. Figure 2a presents the isothermal curves 

for 1 2/ 1.0K K =  (for the homogeneous half-space), Figure 2b for 1 2/ 4.0K K = , 
Figure 2c for 1 2/ 8.0K K = . It can be observed that the greater values of the dimen-
sionless temperature under the heated section (b, c) are for the homogeneous body 
and they decrease together with increase of the ratio 1 2/K K . 

The dimensionless radial heat fluxes ( ) ( )0/j
rq Kϑ ∗  as functions of z�  are pre-

sented in Figures 3a, b, c for 1.5, 2.0, 0.5b c η= = =
� �

 and 1.75r =� . The case of 
homogeneous body is shown in Figure 3a ( )1 2/ 1.0K K = , Figure 3b presents the 
radial heat fluxes for 1 2/ 4.0K K = , Figure 3c for 1 2/ 8.0K K = . For the layered 
structure of the body the radial heat fluxes ( ) ( )0/ , 1,2j

rq K jϑ ∗ =  are discontinu-
ous on the interfaces. The values of jumps increases with increase of the ratio 

1 2/K K . The upper curves represent the radial heat fluxes in the layer of first kind 
( )1j = , the lower for 2j = .  
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The dimensionless heat fluxes ( ) ( )0/j
zq Kϑ ∗  as functions of dimensionless radi-

us r
�

 for 1.5, 2.0, 0.5b c η= = =
� �

 and for cases of the ratio 1 2/ 1.0; 4.0; 8.0K K = , 

and the dimensionless depths ; 2 ; 5 ; 10z δ δ δ δ=� . It is seen that the normal to the 

layering component of heat flux changes its sing under the tips of heated area.  
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Let the boundary temperature ( )0 rθ  be given by equation (29). By using (27), 

(29) and (30) we obtain  

   ( ) ( ) ( ) ( )( ) ( ) ( ) ( ))(0 0 1 1 1 1 1 1
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Substituting (36) into (26) and (28) and using (32) it follows that  
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 (39) 

The integrals In equations (37)-(39) have calculated numerically and the results 
are presented in the form of figures.  

Figures 5a, b, c show the distribution of dimensionless temperature ( ) 0, /r zθ ϑ� �
 

(the isothermal curves) for 1.5, 2.0, 0.5b c η= = =
� �

 and three cases of the ratio 

1 2/ 1.0 ; 4.0 ; 8.0K K = . Figure 5a presents the solution for the homogeneous half-

space. 
The dimensionless component of heat flux normal to the layering 

( ) ( )( )
0, /j

zq r z Kϑ ∗� �  as a function of r
�

 is presented in Figures 6a, b, c, on the four 

cases of depths ; 2 ; 5 ; 10z δ δ δ δ=�  for three cases of the ratio 

1 2/ 1.0; 4.0 ; 8.0.K K =  

 
 

a) 
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Fig. 5. The dimensionless temperature 0/ϑθ  for Problem (2) and 

5.0,0.2,5.1 === ηcb
��

; Fig. 5a for 0.1/ 21 =KK , Fig. 5b for 0.4/ 21 =KK , Fig. 
5c for 0.8/ 21 =KK  
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1 21.5, 2.0, / 1.0, 0.5b c K K η= = = =
� �

1 21.5, 2.0, / 4.0, 0.5b c K K η= = = =
� �

c) 

b) 
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The dimensionless radial component of heat flux ( ) ( ) ( )0, /j
rq r z Kϑ ∗� �  as a func-

tion of z
�  is presented in Figures 7a, b, c, for 1.5, 2.0, 0.5, 1.75b c rη= = = =

� � �
 

for three cases of the ratio 1 2/ 1.0; 4.0 ; 8.0.K K =  The radial heat flux ( )j
rq is dis-

continuous on the interfaces and the jumps take the greatest values near boundary 
z = 0 for 1 2/ 8.0K K = . 
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Fig. 6. The dimensionless heat flux ( ) ( )∗Kq j
z 0/ ϑ  0/ϑθ  for Problem (1) and 

,0.2,5.1 == cb
��

 05.0,5.0 == δη ; Fig. 6a for 0.1/ 21 =KK , Fig. 6b for 

0.4/ 21 =KK , Fig. 6c for 0.8/ 21 =KK , and the dimensionless depths 
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Fig. 7. The dimensionless radial heat flux ( ) ( )∗Kq j
r 0/ ϑ  for Problem (2) and 

,5.0,0.2,5.1,75.1 ==== ηcbr
���

 and Fig 7a - for 0.1/ 21 =KK , Fig 7b - for 

0.4/ 21 =KK , Fig 7b - for 0.8/ 21 =KK  

Final remarks 

The obtained analytical solutions for temperature and heat flux distributions in 
the periodically two-layered half-space with cylindrical hole allow on the numeri-
cal analysis of influence of the composite structure on the thermal fields. The re-
sults presented in figures showed that the layered structure and thermal properties 
of the composite constituents have an essential influence on the radial heat fluxes 
for both considered problems. 
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