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Abstract. Two-temperature microscale heat transfer moderésented. This model con-

tains two energy equations determining the heatanxge in the electron gas and the metal
lattice. A key issue in the application of this rebd the proper description of temperature
dependent thermophysical parameters of the mateosiadidered and this problem is dis-
cussed here. In this part the determination of hiatdce thermophysical parameters is
presented.

I ntroduction

The microscopic, two-temperature model [1, 2, &, 4] is as follows

CaraSe =0T TN SMIE W Q@
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whereT. = To (%, 1), Ty = T, (X, t) are the temperatures of electrons and lattice,
respectivelyC. (Te), C (T)) are the volumetric specific heaks(Te, T)), M (T)) are the
thermal conductivitiesi (Te) is the coupling factor which characterizes thergn
exchange between phonon and electrongJ6}, t) is the source term.

In this part of the paper the models assuring detation of lattice
thermophysical parameters are shown.

1. Lattice heat capacity
The total energy of the lattice is given by equafiy 7]

U, = [ 6() fue(@T)ho do )
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where o;, ®, are the minimum and maximum frequency of phonans(e)
is the phonons density of states, = h/(2r), h is the Planck constant
(h=6.626069810>* JS= 4.1356674440" eVE).

The Bose-Einstein distribution functifs (o, T) is defined as

1

ho
e -1
Xp(kBTu}

where T, is the lattice temperature an#dz is the Boltzmann constant
(ks = 1.3811022 J/K).

The number of phonony, (n)dw of the frequency betweam andw + do per
unit of volume is equal to the product of densitytates and Bose-Einstein distri-
bution function

fo,T)= (4)

N, (0) do =g (®) fae (0, T)) do )

The lattice heat capacity can be calculated adé¢higative of the total phonons
energy (3) with respect to the lattice temperature

_o0y, _mz 0 fge (o, T)) —

C| —ﬁ—(;[g(m)Th(Dd(D—
exp{kh(?rj (6)

* /g (0) do
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They are two models for the density of states efgghonon system, the Debye
model and the Einstein model.

The Einstein model bases on the assumption thét &@m as a harmonic os-
cillator vibrates along all three axies and allibstors have the same frequensy
this means the same enefgy. The density of states can be written as

91 () =3, 8( ~w)) (7)

wheren, [1/m¥ is the number of atoms per unit of volundép-w,) is the Dirac
function. Introducing (4), (7) into (3) one has

U|=I3na8(m—wo) ! ho do = 30, N g
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The phonon heat capacity using Einstein model eagxdpressed as

hay
_ 2 exp
iy :3na kB _ 2
exp 01-1
ke T,
The Debye model assumes that all phonons of acp&timode, longitudinal

or traverse, have a linear dispersion relations Tigpersion relation does not ex-
tend to infinity. The maximum frequency allowedthg Debye model is equal to [4]

1
2 3
o :c(“\/ '\"j (10)

wherec is the speed of sound a¥ds the given volume.
The density of states using Debye model can beesgpd as [4]

(9)
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The Debye temperature is also introduced

hop

T, =
D kB

(12)

In Table 1 the Debye temperature and melting teatpes for selected metals
are collected.
Using formulas (3), (11) the phonon thermal capyaciin be calculated

C = aUI - (]P a BE((DT) h Sd(D
! 2’ 03 °

(13)

or

0} (14)
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Table 1
The Debye temper atur e and melting temper ature [7]

Metal Number of atoms| Debye temperature Melting temperature
N, [10%°/m®] To [K] T [K]
Li 4.70 344 454
Na 2.65 158 371
Cu 8.45 340 1358
Ag 5.85 225 1235
Au 5.90 165 1338
Mg 8.60 400 922
Ca 4.60 230 1113
Zn 13.10 327 692
Fe 17.00 470 1811
Al 18.10 428 934
Sn 14.80 170 505
Pb 3.30 105 601
w 5.91 400 3695
Ti 13.80 420 1941

The following substitution is introduced

h
= kBOT), (15)
and then

s

4 |
2o | o 17 “

Because&g /i = wp /Tp (c.f. equation (12)), so
To
G =5rziob (l] [ et g a7)
nie P\To ) 3 [expi)-1

or taking into account the formula (10)
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3
T
x exp X
C 3Nk( ]J’ _x7exp ) (18)
To) o [exp)- 1

Finally

9nk{ ] ]' xexp(x)
0

(19)
[exp(x)- 1]

wheren, [1/m®] is the number of atoms per unit of volume

It should be pointed out that the thermal capguigdicted by the Debye theory
agrees very well with experimental data of manydsd7]

Notice that integration by parts leeds to the fdemu

4
To To To
]- x* exp(x) x=4]’| L {ﬂ]
o [expx)-1° o [exp!

(20)
X)- 1 expﬂ?j -1
|

When T, is essentially greater than Debye temperafigethenTp /T, - O
and expX) - 1=x. Thus

To To 5
| 3 T
[ X =[x dx:l(T—D) (21)
o [ exptx)-1 A 3T
and the thermal capacity (19) is constant
C =3n,kg (22)
ForT, «Tp it can be assumed thBs /T, - o and then [7]
o 4 4
[ XL SXPE) k= 4 [ 2 &= 46 (23)
o [expx)-1 o [exp()-1 9C

In this case the following approximation of thermapacity can be accepted

3
127* T
C="""n k| —- 24
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which is known as th&, ® law, and it is agrees with experiments within & fee-
cents forT, /Tp < 0.1 [7].

In the general case the thermal capacity of phosbnald be calculated direct-
ly from equation (19) using numerical methods.

In Figure 1 the course of lattice thermal capaoityained from equation (19)
for selected metals is shown. In this Figure thereximations (22) and (24) are
also marked.
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Fig. 1. Lattice thermal capaci€ (T;): a) Al, b) Au, ¢) Cu, d) Ti
2. Phononsthermal conductivity
The phonons thermal conductivity of metals canXessed as [5]
-1 2
M) =ZGM) T (M) (25)

whereCi(T)) is the lattice thermal capacity,(T,) is the total phonons scattering
time andy, is the speed of phonons. The equation (25) basdbeoassumption
that the phonons speed and the relaxation timadependent of frequency.

The thermal capacitZ(T,) predicted by the Debye model is the function of
temperature (c.f. equation (19)) and it is neadgstant at temperatures close to or
higher than the Debye temperature (equation (22jglitionally, using the Debye



Two-temperature microscale heat transfer modet. IP@etermination of lattice parameters 115

model, the velocity, is assumed constant and equal to the speed ofl suitimin
material and then

M (T)=n, kg C? Ton(T) (26)
Phonons collisions can occur with other phononslefects. Using the Mat-
thiessen rule [7, 8] one has
1 1 1

— = +— (27)
Tph  Tphph Tphd

where 1y, ;n and 1, ¢ are the phonon-phonon scatering time and phontectde
scatering time, respectively.

The scattering timey, o is inversely proportional to the temperature &itree-
ly high temperatures, while the phonon-defect stoajds typically independent of
temperature. So, the thermal conductivifys inversely proportional to the tem-
perature in the high-temperature limit [4, 7].

It should be pointed out that in numerical modellof microscale heat transfer
usually the constant lattice thermal conductiviyused\, = Ay, Wherel, is the
thermal conductivity foif,= T, at the room temperature [10, 11].

In the Table 2 the lattice thermal conductivity ameht capacity of selected
metals are collected.

Table 2

Thermal conductivity Ay and thermal capacity C; of selected metals[12]

Thermal Thermal capacity
Metal conductivity G
ho [W-m 1K™ [10°J- M3 K™Y

Li 84.8 1.912

Na 142.0 1.380
Cu 409.0 3.390
Ag 429.0 2.620
Au 315.0 2.500
Mg 156.0 1.773
Ca 201.0 3.060
Zn 120.0 1.938
Fe 80.4 3.537
Al 237.0 2.422
Sn 6.66 4.450
Pb 35.3 1.440
W 174 3.000
Ti 21.9 2.340
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3. Electron-phonon coupling factor

The electron-phonon coupling was first analyzeKlganov et al. [8]. In this
model it is assumed that at lattice and electromptratures much higher than the
Debye temperature anfi » T, the electron-lattice energy exchange rate can be
expressed as

oE _ 3
E - G(Te) (TI Te) (28)
where
G(T,) = Tmen, (29)
BT (T)T,

wherec is the speed of soundy. is the effective electron massg, is the number
density of electronsg(Te) is the electron relaxation time defined as thectebn-
phonon scattering time. ;(Te) evaluated under the assumption that the lattice
temperature is equal to the electron temperaG(&,) is the electron-phonon cou-
pling factor. The electron-phonon scattering tiag(Te) is inversely proportional

to the lattice temperatureTl/and then one obtains the constant value of cogiplin
factor

2 2
G mecon (30)
6A

whereA is the constant.

Altrough a constant value for the electron-phononpting factor is used in
most of the current computational and theoretiogkstigations of short pulse
laser interactions with metals films, there is girmyvexperimental evidence sug-
gesting that the constant electron-phonon cougiiregor may be limited to low
laser intensities, this means low electrons tentpera [8].

For high electrons temperatures a simple expredsiothe temperature de-
pendent electron-phonon coupling factor can be (&ed

hky |l <o0®> T d f(E,u,T ))
G(T,) == ZE(——e dE 31
M=) _Lg() = (31)

where g (E) is the electron density of states (DOS) at thergy level E,
f(E, u, Te) is the Fermi distribution function [7],is the electron-phonon mass
enhancement parameter [8] and®x is the second moment of the phonon spec-
trum defined by McMillan [8].
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At very low electrons temperaturé$ / 0E reduces to the Dirac function
(E - E)

J o -2 CEE e - [ g @)3(E - =0’E) @2

- 00

and then the electron-phonon coupling factor isstaomt
G(T,) =G, =nhkg| <o’ >g(E;) (33)

Finally, the formula (31) can be written as follows

__ G Toep 0fERT)
G(Te>—gz(EF)_jmg(E)( o ]dE (34)

anf for high electrons temperatures this dependshoald be used. In Table 3 the
values ofl, I<e®> andG, for selected metals are collected.

Table 3

The electron-phonon coupling constant |, the value of I<a®> and the constant
coupling factor G for selected metals|[8]

Electron-phonon The value of The constant
Metal coupling ) coupling factor G

constant I<o™> Wm=K™
Al 0.45 185.9 2.45.16
Ag 0.12 225 0.25-10
Cu 0.13 29+4 1.00-10
Au 0.17 23zx4 0.25-16
Ni 0.084 49.5 3.60-10
Pt 0.66 142.5 2.50-1b
W 0.28 112 +15 5.00-10
Ti 0.38 350 + 30 1.00-1®

In Figure 2 the course of electron-phonon couplawjor for selected metals is
shown. The data have been taken from [9]. In tiasié the constant value Gfis
also marked.
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Fig. 2. Electron-phonon coupling factor: a) Al,A), c) Cu, d) Ti
Conclusions

Two-temperature microscale heat transfer modetesgnted. The ways assur-
ing the determination of thermophysical parametges discussed. In particular,
the free electron gas model is used to describ@deature dependent electrons
thermophysical parameters and the phonons gas nodglplied to describe the
lattice thermophysical parameters. The temperatieeendent electron-phonon
coupling factor is also determined.
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