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Abstract. Two-temperature microscale heat transfer model is presented. This model con-
tains two energy equations determining the heat exchange in the electron gas and the metal 
lattice. A key issue in the application of this model is the proper description of temperature 
dependent thermophysical parameters of the material considered and this problem is dis-
cussed here. In this part the determination of metal lattice thermophysical parameters is 
presented. 

Introduction 

The microscopic, two-temperature model [1, 2, 3, 4, 5, 6] is as follows 
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where Te = Te (x, t), Tl = Tl (x, t) are the temperatures of  electrons  and  lattice,  
respectively, Ce (Te), Cl (Tl) are the volumetric specific heats, λe (Te , Tl), λl (Tl) are the 
thermal conductivities, G (Te) is the coupling factor which characterizes the energy 
exchange between phonon and electrons [6], Q (x, t) is the source term.  

In this part of the paper the models assuring determination of lattice 
thermophysical parameters are shown. 

1. Lattice heat capacity 

The total energy of the lattice is given by equation [4, 7] 
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where ω1, ω2 are the minimum and maximum frequency of phonons, gl (ω)  
is the phonons density of states, ħ = h/(2π), h is the Planck constant  
(h = 6.6260693⋅10–34 J⋅s =  4.135667443⋅10–15 eV⋅s).  

The Bose-Einstein distribution function fBE (ω, Tl ) is defined as 
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where Tl is the lattice temperature and kB is the Boltzmann constant  
(kB = 1.381⋅10–23 J/K).  

The number of phonons Nl (ω)dω of the frequency between ω and ω + dω per 
unit of volume is equal to the product of density of states and Bose-Einstein distri-
bution function 

 (ω) dω  (ω) (ω, ) dωl l BE lN  g f T=  (5) 

The lattice heat capacity can be calculated as the derivative of the total phonons 
energy (3) with respect to the lattice temperature 
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They are two models for the density of states of the phonon system, the Debye 
model and the Einstein model. 

The Einstein model bases on the assumption that each atom as a harmonic os-
cillator vibrates along all three axies and all oscillators have the same frequency ω0 
this means the same energy ħω0. The density of states can be written as 

 0(ω) 3 δ(ω ω )l ag n= −  (7) 

where na [1/m3] is the number of atoms per unit of volume, δ(ω-ω0) is the Dirac 
function. Introducing (4), (7) into (3) one has 
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The phonon heat capacity using Einstein model can be expressed as 
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The Debye model assumes that all phonons of a particular mode, longitudinal 
or traverse, have a linear dispersion relation. This dispersion relation does not ex-
tend to infinity. The maximum frequency allowed by the Debye model is equal to [4] 
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where c is the speed of sound and V is the given volume. 
The density of states using Debye model can be expressed as [4] 
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The Debye temperature is also introduced 
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In Table 1 the Debye temperature and melting temperature for selected metals 
are collected. 

Using formulas (3), (11) the phonon thermal capacity can be calculated 
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Table 1 

The Debye temperature and melting temperature [7] 

Metal 
Number of atoms 

na [1028 /m3 ] 

Debye temperature 

TD [K] 

Melting temperature 

Tm [K] 

Li 4.70 344 454 

Na 2.65 158 371 

Cu 8.45 340 1358 

Ag 5.85 225 1235 

Au 5.90 165 1338 

Mg 8.60 400 922 

Ca 4.60 230 1113 

Zn 13.10 327 692 

Fe 17.00 470 1811 

Al 18.10 428 934 

Sn 14.80 170 505 

Pb 3.30 105 601 

W 5.91 400 3695 

Ti 13.80 420 1941 

 
The following substitution is introduced 
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and then 
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Because kB /ħ = ωD /TD (c.f. equation (12)), so 
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or taking into account the formula (10) 
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Finally 
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where na [1/m3 ] is the number of atoms per unit of volume. 
It should be pointed out that the thermal capacity predicted by the Debye theory 

agrees very well with experimental data of many solids [7].  
Notice that integration by parts leeds to the formula 
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When Tl is essentially greater than Debye temperature TD, then TD /Tl → 0  
and exp(x) - 1  ≈ x. Thus  
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and the thermal capacity (19) is constant 

 3l a BC   n k=  (22) 

For Tl « TD it can be assumed that TD /Tl → ∞ and then [7] 
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In this case the following approximation of thermal capacity can be accepted 
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which is known as the Tl 
3 law, and it is agrees with experiments within a few pe-

cents for Tl /TD < 0.1 [7]. 
In the general case the thermal capacity of phonons should be calculated direct-

ly from equation (19) using numerical methods. 
In Figure 1 the course of lattice thermal capacity obtained from equation (19) 

for selected metals is shown. In this Figure the approximations (22) and (24) are 
also marked. 

 

a) b)

 

c) d)

 

Fig. 1. Lattice thermal capacity Cl (Tl ): a) Al, b) Au, c) Cu, d) Ti 

2. Phonons thermal conductivity 

The phonons thermal conductivity of metals can be expressed as [5] 

 21
λ ( ) ( ) τ ( )

3l l l l ph l lT    C T T  v=  (25) 

where Cl(Tl) is the lattice thermal capacity, τph(Tl) is the total phonons scattering 
time and vl is the speed of phonons. The equation (25) bases on the assumption 
that the phonons speed and the relaxation time are independent of frequency.  

The thermal capacity Cl(Tl) predicted by the Debye model is the function of 
temperature (c.f. equation (19)) and it is nearly constant at temperatures close to or 
higher than the Debye temperature (equation (22)). Additionally, using the Debye 
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model, the velocity vl is assumed constant and equal to the speed of sound within 
material and then 

 2λ ( ) τ ( )l l a B ph lT   n k c T=  (26) 

Phonons collisions can occur with other phonons or defects. Using the Mat-
thiessen rule [7, 8] one has 
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where τph ph and τph d are the phonon-phonon scatering time and phonon-defect 
scatering time, respectively. 

The scattering time τph ph is inversely proportional to the temperature at relative-
ly high temperatures, while the phonon-defect scatering is typically independent of 
temperature. So, the thermal conductivity λl is inversely proportional to the tem-
perature in the high-temperature limit [4, 7].  

It should be pointed out that in numerical modelling of microscale heat transfer 
usually the constant lattice thermal conductivity is used λl = λ0, where λ0 is the 
thermal conductivity for Te = Tl at the room temperature [10, 11]. 

In the Table 2 the lattice thermal conductivity and heat capacity of selected 
metals are collected. 

Table 2 

Thermal conductivity λ0 and thermal capacity Cl of selected metals [12] 

Metal 
Thermal  

conductivity 
λ0 [W·m−1·K−1]  

Thermal capacity 
Cl  

[106
 J·m−3·K−1] 

Li 84.8 1.912 

Na 142.0 1.380 

Cu 409.0 3.390 

Ag 429.0 2.620 

Au 315.0 2.500 

Mg 156.0 1.773 

Ca 201.0 3.060 

Zn 120.0 1.938 

Fe 80.4 3.537 

Al 237.0 2.422 

Sn 6.66 4.450 

Pb 35.3 1.440 

W 174 3.000 

Ti 21.9 2.340 
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3. Electron-phonon coupling factor 

The electron-phonon coupling was first analyzed by Kaganov et al. [8]. In this 
model it is assumed that at lattice and electron temperatures much higher than the 
Debye temperature and Te » Tl the electron-lattice energy exchange rate can be 
expressed as 
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where c is the speed of sound, me is the effective electron mass, ne is the number 
density of electrons, τe(Te) is the electron relaxation time defined as the electron-
phonon scattering time τe ph(Te) evaluated under the assumption that the lattice 
temperature is equal to the electron temperature, G(Te) is the electron-phonon cou-
pling factor. The electron-phonon scattering time τe ph(Te) is inversely proportional 
to the lattice temperature 1/Te and then one obtains the constant value of coupling 
factor 

 
2 2π

6
e em c n

G
A

=  (30) 

where A is the constant. 
Altrough a constant value for the electron-phonon coupling factor is used in 

most of the current computational and theoretical investigations of short pulse 
laser interactions with metals films, there is growing experimental evidence sug-
gesting that the constant electron-phonon coupling factor may be limited to low 
laser intensities, this means low electrons temperatures [8]. 

For high electrons temperatures a simple expression for the temperature de-
pendent electron-phonon coupling factor can be used [8] 
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where g (E) is the electron density of states (DOS) at the energy level E,  
f (E, �, Te) is the Fermi distribution function [7], l is the electron-phonon mass 
enhancement parameter [8] and <ω

2> is the second moment of the phonon spec-
trum defined by McMillan [8].  
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At very low electrons temperatures ∂f / ∂E  reduces to the Dirac function 
(E → EF) 
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and then the electron-phonon coupling factor is constant 
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Finally, the formula (31) can be written as follows 
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anf for high electrons temperatures this dependence should be used. In Table 3 the 
values of l, l<ω2> and G0 for selected metals are collected.  
 

Table 3 

The electron-phonon coupling constant l, the value of l<ω2> and the constant  
coupling factor G for selected metals [8] 

Metal 
Electron-phonon 

coupling  
constant l 

The value of 

l<ω2> 

The constant  
coupling factor G  

[Wm–3K–1]  

Al 0.45 185.9 2.45·1017 

Ag 0.12 22.5 0.25·1017 

Cu 0.13 29 ± 4 1.00·1017 

Au 0.17 23 ± 4 0.25·1017 

Ni 0.084 49.5 3.60·1017 

Pt 0.66 142.5 2.50·1017 

W 0.28 112 ± 15 5.00·1017 

Ti 0.38 350 ± 30 1.00·1019 

 
In Figure 2 the course of electron-phonon coupling factor for selected metals is 

shown. The data have been taken from [9]. In this Figure the constant value of G is 
also marked. 
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a) b)

 
c) d)

 

Fig. 2. Electron-phonon coupling factor: a) Al, b) Au, c) Cu, d) Ti 

Conclusions 

Two-temperature microscale heat transfer model is presented. The ways assur-
ing the determination of thermophysical parameters are discussed. In particular, 
the free electron gas model is used to describe temperature dependent electrons 
thermophysical parameters and the phonons gas model is applied to describe the 
lattice thermophysical parameters. The temperature dependent electron-phonon 
coupling factor is also determined. 
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