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Abstract. Two-temperature microscale heat transfer model is presented. This model con-
tains two energy equations determining the heat exchange in the electron gas and the metal 
lattice. A key issue in the application of this model is the proper description of temperature 
dependent thermophysical parameters of the material considered and this problem is dis-
cussed here. In this part the determination of electrons thermophysical parameters is pre-
sented. 

Introduction 

Micro-scale heat transfer in the metals can be described in different ways [1-5]. 
In this paper the microscopic, two-temperature model presented among others in 
[1, 2, 6] is presented. This model involves two energy equations determining the 
heat exchange in the electron gas and the metal lattice. So, the equations creating 
the model discussed can be written in the form 
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where Te = Te (x, t), Tl = Tl (x, t) are the temperatures of  electrons  and  lattice,  
respectively, Ce (Te ), Cl (Tl ) are the volumetric specific heats, λe (Te , Tl ), λl (Tl )  
are the thermal conductivities, G(Te) is the coupling factor which characterizes  
the energy exchange between phonon and electrons [6], Q(x, t) is the source 
term.  

This model describes, among others, the thermal processes proceeding in met-
als subjected to the laser pulse or high-energy ion bombardment of metal targets 
[6]. 
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A key issue in the application of two-temperature model is the proper descrip-
tion of temperature dependent thermophysical properties of the material and this 
problem is discussed here. In this part of the paper the models assuring determina-
tion of electrons thermophysical parameters are shown. 

1. Electrons heat capacity 

In order to define the electron heat capacity Ce (Te), at first the internal total 
electron energy is calculated [5-7] 
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where g (E ) is the electron density of states (DOS) at the energy level E and  
f (E, µ, Te ) is the Fermi distribution function. 

The Fermi distribution function is defined as 
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where µ = µ(Te) [eV] is the chemical potential at the temperature Te [K] and kB is 
the Boltzmann constant (kB = 1.381⋅10–23 J/K). 

At the absolute temperature Te = 0 K, f (E, µ, Te) = 1 when E < µ, and f (E, µ, 
Te) = 0 when E > µ. It should be pointed out that µ(0) = µF = EF is called the Fermi 
energy.  

The Fermi energy can be calculated using the formula [7] 
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where ħ = h/(2π), h is the Planck constant (h = 6.6260693⋅10–34 J⋅s =  

= 4.135667443⋅10–15 eV⋅s), me is the electron mass (me = 9.109⋅10–31 kg) and ne is the 
number of electrons Ne per unit of volume V (ne = Ne /V).  

Additionally, the Fermi temperature TF is defined 
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and the Fermi velocity vF is introduced. The velocity vF can be determined from the 
formula [7] 
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In the Table 1 the Fermi parameters of selected metals are collected, while Figure 
1 illustrates the distribution of Fermi function (4) for temperatures Te = 0,Te = 0.1TF,  
Te = 0.25TF and Fermi energy � = EF for selected metals. 

 

Table 1 

Fermi parameters of selected metals 

Metal 

Electron 
number 
density 

ne [1028 /m3] 

Fermi energy 

EF [eV] 

Fermi  
temperature 

TF [104 K] 

Fermi velocity 

vF [10 6m/s] 

Li 4.70 4.75 5.51 1.29 

Na 2.65 3.24 3.77 1.07 

K 1.40 2.12 2.46 0.86 

Cu 8.45 7.03 8.16 1.57 

Ag 5.85 5.50 6.38 1.39 

Au 5.90 5.53 6.41 1.40 

Mg 8.60 7.11 8.24 1.58 

Ca 4.60 4.68 5.43 1.28 

Zn 13.10 9.41 10.91 1.82 

Fe 17.00 11.20 13.00 1.98 

Al 18.10 11.70 13.54 2.03 

Sn 14.80 10.20 11.84 1.90 

Pb 13.20 9.45 10.97 1.82 

W 5.91 5.55 6.42 1.39 

Ti 13.80 9.74 11.30 1.85 

 
The electron density of states g (E ) appearing in equation (3) can be obtained us-

ing FEG model (free electron gas model) [4] and then 
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In the newest publications [6, 8] the electron density of states can be determined 
from the electronic structure calculations performed within the density functional 
theory. 
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a) b)

 

c) d)

 

Fig. 1. Fermi function: a) Al, b) Au, c) Cu, d) Ti 

The number of electrons Ne (E)dE of energy between E and E + dE in the unit of 
volume at the temperature Te is equal to the product of density of states and Fermi 
distribution function (4) 

 ( ) d    ( ) ( , , ) de eN E  E g E f E T Eµ=  (8) 

This function shown in Figure 2 (for electron density of states described by 
equation (8)) is called the distribution function of free electrons. 

The total number of electrons is equal to 
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The electron heat capacity can be calculated as the derivative of the total electron 
energy (3) with respect to the electron temperature 
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Determination of Ce (Te) is not easy because the evaluation of ∂f/∂Te requires 
the knowledge of a chemical potential as a function of electrons temperature  
�(Te ).  
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a) b)

 
c) d)

 
Fig. 2. Distribution function of free electrons Ne (E): a) Al, b) Au, c) Cu, d) Ti 

 
At the low electron temperatures the Sommerfeld expansion is commonly used 

[7]. As is known, at the temperature Te = 0 (Te → 0), the Fermi function (4)   
f (E, �F, Te) = 1 when E < �F, and f (E, �F, Te) = 0 when E > �F. So (c.f. equation 
(10)) 
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At the low temperature Te the Fermi function is constant (0 or 1) except the nar-
row interval [� F – �, � F + �] as shown in Figure 3. In this case the following ap-
proximation can be taken into account 
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Sommerfeld proposed the following approximation [7] 
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where g(�) = g(E) is described by equation (8). 
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Fig. 3. Fermi function for Te = 0 and for low temperature Te > 0 

The first component on the right-hand side of equation (14) under the assump-
tion that � ≈ � F can be substituted by formula (13), in the second component  
� = � F can be accepted 
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Because the number of electrons Ne is constant and temperature independent so 
the first component on the right-hand side of equation (15) is equal to Ne and then 
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From equation (8) one has 
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To determine the electrons thermal capacity, at first the internal energy is calcu-
lated using the Sommerfeld expansion (14) 
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and then 
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On the basis of formula (16) the sum of the second and third component on the 
right-hand side of equation (22) is equal to zero, while the first component is tem-
perature independent. So 
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In the case of high electron temperatures the simplification (14) is not valid and 
the electron heat capacity should be calculated directly from equation (11).  It re-
quires the knowledge of chemical potential as a function of electrons temperature 
�(Te ). The chemical potential can be obtained from the conservation of the total 
number of electrons - c.f. equation (10). 

In Figure 3 the course of thermal capacity described by equation (11) under the 
assumption that the chemical potential is calculated using the formula (10) for 
selected metals is shown. 
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a) b)

 

c) d)

 

Fig. 4. Electrons thermal capacity [9]: a) Al, b) Au, c) Cu, d) Ti 

2. Electrons thermal conductivity 

The electrons thermal conductivity in metals is described by the Drude model 
relationship [7] 

 21
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where Ce (Te ) is the electrons thermal capacity, τe (Te, Tl ) is the total electron scat-
tering time and ve is the mean velocity of the electrons.  

It is assumed that all electrons within the metal are traveling at the Fermi veloc-
ity (7), this means ve = vF. 

Electrons collisions can occur with other electrons, the lattice, defects, grain 
boundaries and surfaces as shown in Figure 5.  

Assuming that each mechanism is independent, the Matthiessen rule [7, 8]  can 
be applied  
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where τee is the electron-electron scattering time, τe ph is the electron-phonon scat-
tering time, τed is the electron-defect scattering time and τeb is the electron-
boundary scattering time. 

 
Fig. 5. Scheme of various scattering mechanisms [4] 

Electron-defect and electron-boundary scattering are both typically independent 
of temperature, while electron-phonon scattering rate is proportional to the lattice 
temperature Tl, this means 1/τe ph = BTl and electron-electron scattering rate is pro-
portional to the second power of electron temperature 1/τee = ATe

2. So 
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where A, B are typically assumed to be constant.  
Taking into account the dependencies (28), (7) the electrons thermal conduc-

tivity (26) can be expressed as 
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For temperatures above the Debye temperature the electron-electron scattering 
in comparison with electron-phonon scattering can be neglected [7] and under the 
assumption that thermal capacity is described by formula (24) one has 
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In numerical modelling of microscale heat transfer usually the following de-
pendence is used [10, 11] 

 0λ ( , ) λ e
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where λ0 is the thermal conductivity for Te = Tl at the room temperature. 
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