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Abstract. In this paper, the fundamental solutions method to the Helmholtz eigenvalue 
problem in two-dimensional elliptical shaped domains are presented. The Green’s functions 
of the Helmholtz equation in the half-plane and in the quarter-plane are used. Numerical 
examples of the eigenvalue problems in a half-elliptic and a quarter-elliptic domains are 
given.  

Introduction 

The Helmholtz equation is obtained, for instance, by using separation method 
to the wave equation [1]. This equation can be written in the form  

 022 =+∇ ff Ω ,   ( ) Syx ∈,   (1) 

where 2∇  is the Laplace operator and S is the considered domain. In the case of 
initial-value problems which are governed by the unsteady diffusion equation as 
a result of separation of time and the space variables, the modified Helmholtz 
equation is acquired  

 022 =−∇ fkf ,   ( ) Syx ∈,   (2) 

The constants � and k in equations (1) and (2), respectively, are introduced by 
separation of variables. These equations are completed by conditions at the bound-
ary S∂  of the domain S. We assume here the Dirichlet boundary condition  

 ( ) ( ) Syxyxf ∂∈= ,,, 0   (3) 

The differential equation (1) or (2) and boundary condition (3) form the Helm-
holtz eigenvalue problems. The problem (1)-(3) for elliptic domain S (elliptical 
membrane) was the subject of the papers [1-3]. In this paper, we consider the half-
elliptic and the quarter-elliptic domains. An approximate solution of the problems 
will be derived by using the fundamental solution method (MFS).  
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The MFS is a boundary method which does not involve discretization and inte-
gration. The idea of the method is the usage of a linear combination of fundamen-
tal solutions with sources located at fictitious points outside the domain of the 
problem. The fundamental solution is the Green’s function G defined in an infinite 
domain. The functions ( )kQyxG ;,  satisfy the Helmholtz equation in the domain S 

for each source points ( )kkkQ ηξ ,  located outside S. In the MFS, we approximate 

the solution of the problem by a function of the form [2]  

 ( ) ( )∑
=

=
n

k
kkkn yxGcyxw

1

,;,, ηξ   (4) 

The approximate solution nw  satisfies the differential equation (1), and it does 

not satisfy the boundary condition (3). The condition can be satisfied approximate-
ly by a suitable determination of the coefficients ,kc  k = 1, 2,…,n. For this pur-

pose we use the least square method. First we choose the points ( )jjj yxP , , j = 1, 

2,…,n, located on boundary S∂  of the domain S. Next we definite the function  
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This function has a minimum, if the following system of equations is satisfied  

 A c = 0  (6) 

where  [ ]
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For a non-trivial solution of the system (6), the determinant of the matrix A is 
set equal to zero, yielding the eigenvalue equation 

 det A(Ω) = 0 (7) 

Equation (7) with the unknown Ω, must be solved numerically to get the eigenval-
ues. The eigenfunctions for corresponding eigenvalues Ωm, m = 1, 2,…, are given 
by (4) where the coefficients ,kc  k = 2,…,n, are derived dependent on 1c  from n-1 

equations of the system (6). 

1. Fundamental solutions  

The fundamental solution of the differential equation (1) in the half-plane:  
0≥∞<<∞− yx , , is a function (Green’s function) G, which satisfies the follow-

ing equation  
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 ( ) ( )ηδξδ −−=Ω+∇ yxGG 22  (8) 

where δ(·) is the Dirac delta function. The solution of this equation with Dirichlet 
boundary condition: ( ) 00 =,xf , can be derived by using double Fourier transform. 

The transform is defined by the two relationships  

 ( ) ( )∫ ∫
∞

∞−

∞

==
0

sin,,,,,,][F dydxyeyxGGG xi βηξηξβα α   (9) 

 ( ) ( )∫ ∫
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−=

0
2

sin,,,
1

,,, βαβηξβα
π

ηξ α ddyeGyxG xi   (10) 

where G  is the Fourier transform of the function G. If we multiply both sides of 

equation (1) by ye x βαι sin , integrate over the half-plane: 0≥∞<<∞− yx ,  and 

use the properties of Fourier transform, we obtain the algebraic equation 

 ( ) ( ) ηβ
π

ηξβαβα ξα sin
2
1

,,,222 ieG =Ω−+   (11) 

Using (11) in equation (10), we have 
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or after transformation 
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Finally, the Green’s function for Helmholtz equation in the half-plane with Di-
richlet boundary condition can be written in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
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where ( )( )⋅1
0H  is the Hankel function of the first kind and zero order, 1−=i . 

Similarly, the Green’s function for Helmholtz equation (1) in the quarter-plane 
with boundary conditions: ,0

0
=

=x
G  ,0

0
=

=y
G  can be obtained. The function has 

the form 
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The Green’s function (14) or (15) are used in eigenvalue equation (7). 

2. Numerical examples  

Applications of the fundamental solutions method with use free space Green’s 
functions are widely presented in literature (for instance the papers [1-3]). In this 
paper, the method with using Green’s functions which satisfy boundary conditions 
on a part of the edges of the considered domain is proposed. The function with free 
parameters as a solution of the differential equation is assumed. This function sat-
isfies boundary conditions on a part of the edges. The presented numerical exam-
ples deal with eigenvalue problems for Helmholtz equation in half- or quarter-
elliptic domains. The considered domains with source and collocation points are 
shown in Figure 1. 

The Hankel function ( ),1
0H  which occurs in equations (14)-(15), is the  

complex-valued function and that way the left hand side of the equation (7) takes 
the complex values. Therefore, we introduce a function F defined as 

 

  
Fig. 1. Geometry configuration of the considered domains with collocation points Pj  

on the elliptical arch and source points kQ  on the circular arch; a) half-ellipse domain, 

b) quarter-ellipse domain 
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 ( ) ( )Ω=Ω AdetF  (16) 

where the symbol ⋅  denotes a modulus of a complex number. The minima of the 

function F determine roots of equation (7).  
The eigenvalues of the Helmholtz operator are the frequency parameters of free 

vibration of a membrane. The first ten frequency parameter values nΩ , n = 1, 

…10, of the half-elliptic membrane with clamped edges are presented in Table 1. 
The calculations were performed for various values of semi-diameters ratio a/b of 
the half-ellipse. For the half-circular membrane (a/b = 1.0) the frequency parame-
ters determined by the FSM are compared with the exact eigenvalues which are 
obtained as roots of equation: ( ) 0=ΩmJ , m = 1, 2,… . For assumed number of 

sources (n = 18), small differences of the results calculated by using MFS and 
exact values are observed. 

 

Table 1 

Eigenvalues nΩ  of the Helmholtz operator in a half-elliptic domain obtained by 

MFS for various values of semi-diameters ratio a/b 

n 
a/b = 1.0 a/b = 1.5 

FSM 

a/b = 2.0 

FSM 

a/b = 3.0 

FSM FSM Exact 

1 3.83170 3.83171 3.54484 3.42588 3.32123 

2 5.13562 5.13562 4.33781 3.99048 3.67965 

3 6.38016 6.38016 5.16984 4.58509 4.05345 

4 7.01559 7.01559 6.66668 6.55554 6.45773 

5 7.58834 7.58834 6.02774 5.20393 4.44104 

6 8.41724 8.41724 7.43162 7.09940 6.80660 

7 8.77148 8.77148 6.90191 5.84208 4.84093 

8 9.76102 9.76102 8.22539 7.66086 7.16374 

9 9.93611 9.93610 7.78507 6.49552 5.25169 

10 10.17347 10.17346 9.80190 9.69347 9.59771 

 
In Table 2, the first ten frequency parameter values for one-quarter of the ellip-

tic membrane with clamped edges are given. In FSM the Green’s function for 
Helmholtz equation in the quarter-plane with Dirichlet boundary conditions was 
used. The results obtained for the circular sector by FSM are in agreement with 
exact ones. 
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Table 2 

Eigenvalues nΩ  of the Helmholtz operator in a quarter-elliptic domain for various 

values of semi-diameters ratio a/b 

n 
a/b = 1.0 a/b = 1.5 

FSM 

a/b = 2.0 

FSM 

a/b = 3.0 

FSM FSM Exact 

1 5.13562 5.13562 4.33781 3.99048 3.67965 

2 7.58834 7.58834 6.02774 5.20390 4.44105 

3 8.41724 8.41724 7.43162 7.09940 6.80660 

4 9.93611 9.93611 7.78569 6.49544 5.25170 

5 11.06471 11.06471 9.04446 8.23843 7.52872 

6 11.61984 11.61984 10.55524 10.23049 9.94355 

7 12.22510 12.22509 9.56317 7.83571 6.10097 

8 13.58922 13.58929 10.74558 9.43641 8.28068 

9 14.37240 14.37254 12.12377 11.34058 10.65190 

10 14.79588 14.79595 13.68775 13.36692 13.08285 

Conclusions 

The Helmholtz eigenvalue problems in the half- and quarter-elliptic domains by 
using the method of fundamental solutions have been presented. The fundamental 
solution of the Helmholtz equation in the half-plane was derived. In order to de-
termine the eigenvalues, the minimum of a real function was found. The source 
points occurring in the approximate formula of the solution were selected on 
a circle in the half-plane (or in the quarter-plane) outside the considered half-
elliptic (quarter-elliptic) domain. The comparison of numerical results shows that 
high accuracy of the calculation is achieved for 18 sources.  
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