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Abstract. Elliptic equation with source term dependent on the first derivative of unknown 
function is considered. To solve this equation  by means of the boundary element method 
the fundamental solution should be known. In the paper the fundamental solutions for 1D, 
2D and 3D problems are derived. 

Introduction 

The following elliptic equation is considered 
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where T  is the temperature, ca /λ=  is the thermal diffusivity (λ  is the thermal 
conductivity and c  is the volumetric specific heat, respectively), u  is the constant 
velocity and ε  is the porosity. The 1D, 2D and 3D problems are analyzed, this 
means }{ 1xx = , },{ 21 xxx = , or },,{ 321 xxxx = . In equation (1): 
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where M  is the problem dimension. 
The equation (1) is supplemented by boundary conditions 
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where bT  and bq  are the known boundary temperature and boundary heat flux, 

respectively, nT ∂∂ /  is the normal derivative 
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where eαcos  are the directional cosines of the normal outward vector .n  

The aim of investigations is to solve the problem formulated by means of the 
boundary element method. It is possible under the assumption that the fundamental 
solution is known. In this paper the fundamental solution is derived for 1D, 2D and 
3D problems.  

1. Boundary element method for elliptic equation with temperature -
dependent source term 

At first, the elliptic equation with temperature - dependent source term is 
considered 

 ( ) 0)(2 =−∇ xTkxTλ  (5) 

where k  is the constant value. 
The weighted residual criterion for equation (5) has the following form 
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where ( )xT ,* ξ  is the fundamental solution. 

The fundamental solution should fulfill following equation 
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where ),( xξδ is the Dirac function. 

It can be check that the following functions [1, 2] 
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are the searched fundamental solutions. 
In equation (8) r  is the distance between the observation point ξ  and the  

point x  
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Function ( )⋅0K  is the modified Bessel function of second kind, zero order [3]. 

It should be pointed out that in order to check the condition (7) for 2D problem 
the following dependences should be known [2, 3] 
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where ( )⋅1K  is the modified Bessel function of second kind, first order [2, 3]. 

The heat flux resulting from the fundamental solution is defined 

 
n

xT
xq

∂
∂−= ),(

),(
*

* ξλξ  (12) 

and this function can be calculated in analytical way 
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where 
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After the mathematical transformations the equation (6) can be written in the 
form [2, 4] 
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Taking into account the formula (7) and introducing ( ) ( ) nxTxq ∂∂−= /λ  and 

( )xq ,* ξ  one has the following boundary integral equation 

 ( ) ( ) ( ) ( ) ( ) ( )∫∫
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Γ=Γ+ d,d, ** xqxTxTxqTB ξξξξ  (16) 

where for ( ) 1: =Ω∈ ξξ B , while for ( ) ( )1,0: ∈Γ∈ ξξ B  is the coefficient con-

nected with the location of observation point .ξ  

2. Fundamental solution for elliptic equation with source term 
dependent on temperature derivative 

The weighted residual criterion for equation (1) has the following form 
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where ( )xT ,* ξ  is the fundamental solution.  
Using the second Green formula [2, 4] one has 
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where ( ) ( ) nxTxq ∂∂−= /λ  and ( ) ( ) nxTxq ∂∂−= /,, ** ξλξ , as previously.  

Finally one obtains 
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It is visible that in the case considered the fundamental solution should fulfill 
following equation (c.f. equation (20)) 
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For 2D problem the solution of equation (21) is as follows [5] 
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It is true, because 

 
( )








 −








+








−=

∂
∂

−
−

r

x

a

ru
K

a

ru
Ke

a

u

x

xT a

xu

11
10

2

)(

1

*

224

,
11 ξεε

λπ
εξ

ξε

 (23) 

 
( )

r

x

a

ru
Ke

a

u

x

xT a

xu

22
1

2

)(

2

*

24
,

11 ξε
λπ

εξ
ξε

−








−=

∂
∂

−
−

 (24) 

Next 
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Introducing formulas (23), (25), (26) into (21) for ξ≠x  one obtains 
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Additionally, the heat flux resulting from the fundamental solution (22) is 
determined (c.f. definition (12))  
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For 1D and 3D problems fundamental solutions are unknown. Comparing the 
solutions for 2D problem (equations (8), (22)) it is visible, that the solution (22) is 

the product of solution (8) and the function 
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We check: does the solution (29) fulfills the equation (21)? 
So 
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and 
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Introducing (30), (33), (34), (35) into (21) for ξ≠x  one obtains 
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For 3D problem the function ),(* xq ξ  has the following form 
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For 1D problem the equation (21) takes a form 
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where .1xx =  

To determine the fundamental solution at first the following equation is 
considered 
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The substitution is introduced 
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where τ is a constant value.  
On the basis of (40) the following fundamental solution of equation (1) for 1D 

problem is proposed 
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Additionally, the heat flux resulting from fundamental solution 
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is calculated 
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Summing up, fundamental solutions for equation (1) are the following 
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while the heat fluxes resulting from the fundamental solutions are of the form 
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Conclusions 

It is well known, that the boundary element method can be applied for numeri-
cal solution of optional equation under the assumption that the fundamental solu-
tion is known. In the paper the fundamental solutions for 1D, 2D and 3D problems 
for elliptic equation with source term dependent on the first derivative of unknown 
function are derived.  
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