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Abstract. Elliptic equation with source term dependent om fikst derivative of unknown
function is considered. To solve this equation nisans of the boundary element method
the fundamental solution should be known. In thpepahe fundamental solutions for 1D,
2D and 3D problems are derived.

I ntroduction

The following elliptic equation is considered
0T(x) _

aDZT(x)—eua—X 0 1)
1

where T is the temperaturea=A/c is the thermal diffusivity 4 is the thermal
conductivity andc is the volumetric specific heat, respectively)js the constant
velocity and £ is the porosity. The 1D, 2D and 3D problems arelyaed, this
meansx={x } X={x, %}, or x={x, %, %3}. In equation (1):
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where M is the problem dimension.
The equation (1) is supplemented by boundary ciomdit

xarp: TX=T,

0T _ 3)

xdlr,: q(x)=-4 In b

where T, and g, are the known boundary temperature and boundaay fhex,
respectively,dT /dn is the normal derivative
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wherecosa, are the directional cosines of the normal ordwactor n.

The aim of investigations is to solve the problesmulated by means of the
boundary element method. It is possible under #seiraption that the fundamental
solution is known. In this paper the fundamentdlittan is derived for 1D, 2D and
3D problems.

1. Boundary element method for elliptic equation with temperature -
dependent sourceterm

At first, the elliptic equation with temperature dependent source term is
considered

A02T(x) -kT(x)=0 (5)

wherek is the constant value.
The weighted residual criterion for equation (53 kize following form

20270 -kT(X) [T (€. x)d =0 6)
Q

whereT"(£,x) is the fundamental solution.
The fundamental solution should fulfill followingjeation

ADPT*(EX) -k T (&,x)=-3(&,%) 7)

where d(¢, x) is the Dirac function.
It can be check that the following functions [1, 2]

1 Ko 5 ri, 2D problem
27/ A
T(EX = - (8)
5T
L , 3D problem
AT AT

are the searched fundamental solutions.
In equation (8)r is the distance between the observation pdinand the

point x
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Function K (0 is the modified Bessel function of second kinetazorder [3].

It should be pointed out that in order to checkabgedition (7) for 2D problem
the following dependences should be known [2, 3]

L Kol2) = Ky) (10
and
L ,(2) =-Ko(d) - 2 Ky(2) (1)

where Kl([)] is the modified Bessel function of second kirigstforder [2, 3].
The heat flux resulting from the fundamental salntis defined

q%ax)=-n491§§ﬁg (12)

and this function can be calculated in analyticayw

Zd://_E r Kl( \/E r} , 2D problem
7T
q & = (13)
L
4d 5 e[ \E ] [%n/%} , 3D problem
mr
where
M
d= Z_:1 (Xe_‘:ze) cosa, (14)

After the mathematical transformations the equaf@ncan be written in the
form [2, 4]

AT @0 -kT @x |[T(x)da +
Q

0T (x) AT * (&,X) (15)
i)l T*(&,X) T dar - [[/1 T(x) T dr=o0
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Taking into account the formula (7) and introducigix) =-A T (x)/dn and

q (E, x) one has the following boundary integral equation
B(¢) T(£) + [alx) T™(¢.x) dr = [T(x) a"(¢,x) dr (16)
r r

where for £0Q: B(£)=1, while for £0r: B(¢)J(0,2) is the coefficient con-
nected with the location of observation poft

2. Fundamental solution for elliptic equation with sourceterm
dependent on temperature derivative

The weighted residual criterion for equation (13 kize following form

21(y— o1y 9T(X)
j[aD T(X)—€u e

} T'(&,x)dQ = 0 (17)
Q 1

whereT"(£,x) is the fundamental solution.
Using the second Green formula [2, 4] one has

Ja0? T (£X)T() +[[{aT*(E,x)a;—r(:() ~at() 2L g -
(18)
[eu a;-)EX)T*(E,x)dQ =0
or i '
a 027°(£,x) T(x) dQ —%JT*(E,X) a(x) dr+%£q*(f,x)T(x) dr +
(19)

fsuaT (£, T(x)dQ - [euT (&x) T(x) cosa,dr =0
Q 0% r

whereq(x) =-1aT(x)/on andq (&,x) ==4 T (&,x)/an, as previously.
Finally one obtains

f|aceT(ex) +eulT 8 a0 11760 qbo ar =
o aX]_ Cr (20)

olkr

[q(&X)T(X)dr + [euT (&%) T(x)cosa, dr
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It is visible that in the case considered the funeliatal solution should fulfill
following equation (c.f. equation (20))

a 27 (£x) +eu T X - 5(e 5 1)
0%

For 2D problem the solution of equation (21) iS@kws [5]
_Eu(x-4§)
T (EX) = % e 2 Ko(ﬂJ (22)

It is true, because

x _Eu(x=¢)
AT (&x) _ _ eu o 22 {Ko(azuarj .\ Kl(eurj Xl;fl} (23)

0% 4mAa

Next

0?71 (&,x) _  eu o 2a

Eu eur
2 5= Ko -
% 4irda 2a 2a

£u Kl(eurJ x-& _Eu Ko(gurj (q-&f (25)

a 2a r 2a 2a r2
_ 2
2k, £ (x-&) - [ Eur 1
2a r3 2a | r

T (&%) _  eu e‘W{_su K(sur} (-&F
T 0

Z 2a r2

_eu(x=4¢) {

d )(22 471 a

ok [Eur (x, = &) s [Eur)
1 2a r3 N 2a)r

Introducing formulas (23), (25), (26) into (21) fak & one obtains

(26)
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_Eu(x-4)
Eu o 22 |_E&U Ky gur)
4irda 2a 2a

£u K{eur} x-& _ €U Ko(furj (a-&P

a 2a r 2a 2a r?
)
2k, [£ur (-&)* | WELIAEIE
2a r3 2a ) r
gu(x=§)
EU T 5a eu , (eur) (% -&)
e - Ko 2
4l a 2a 2a r
_ 27)
gur) (% -&)? gur) 1
2K, 2 220 4+ Ky|——| =] +
2a r3 2a ) r
_Eu(x-§)
culo €Y o 2a Kq gury . K, Eur | x—-§ ~ o
4mAa 2a 2a r

Additionally, the heat flux resulting from the fuadental solution (22) is
determined (c.f. definition (12))

_fu(xl_ﬁtl) {
X) = —¢ K + Ky ——| —=]| coso +
96X 4mra H 0( ZaJ 1( ZaJ r } !

Kl(—g u rj o7} cosaz}

2a r

(28)

For 1D and 3D problems fundamental solutions adenown. Comparing the
solutions for 2D problem (equations (8), (22))sitvisible, that the solution (22) is

the product of solution (8) and the functic&xp[—%a_{l)j. So, for 3D
problem the following fundamental solution is prepd

1 o &)

AT AT

T (&,x) = (29)
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We check: does the solution (29) fulfills the equa(21)?

So
" £u
T (6x _ 1 _E[H(Xl_gl)] \—¢ _EUX—¢& _&U
= e - -~ == - ——| (30)
0% 4rAr r 2a r 2a
" £u -
aT ({,X) _ 1 _£[r+(xl_<(1)] XZ_{Z Eu XZ_{Z
- e R I
0%, 4mAr o 2a
" £u -
aT ({,X) _ 1 —E[T‘F(Xl—t,i)] X3_§(3 Eu X3_E3
- e R e BN )
0X%3 4 Ar LT 2a
and
* _EUT Ly
T (&) _ 1 o 22 I =) 3(X1‘51)2 +
% ATy r
euY (&P . (eu)’, 3eu (x-&)
cH¥l V1 s1) 21 + |2 =21 5 g (33)
2a r 2a 2a 1

2
EUX~—6  H[EUul %=g 1 ful
a r? 2a r

aZT*(E’ X) _ 1 e_% [I’ +(X1_€1)] 3 (Xz _52)2 +
%, ATy r4
(34)
seu (o=&f , (eu) be-&f _ 1 _eut
2a r3 2a r? r2 2ar
aZT*(E’ X) _ 1 e_% [I’ +(X1_€1)] 3 (X3 _53)2 +
O % Ay ré
(35)

3eu (a-&F [ﬂjz (=& 1 eu 1]

2a r3 2a r2 r2 2ar
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Introducing (30), (33), (34), (35) into (21) far# & one obtains

1 e—;:[m(x;é)]{s(xl—{l)z . (auf (x-&) {QJZ

AT AT r4 2_a r? 2a

2 2
2a o3 a r? 2a r r2 2ar

+

Eu
R T ) (o-&)F |, 3eu (%-&)
T 3 2 T 3
AT Ar r 2a r

[sujz(xz—{z)z 1 ﬂl]+ 1 e‘;[”(xl-c‘l)]{s(xg—gf?,)z+ (36)
a

3eu (x-&) + (ﬂ}z (=& _ 1 _eu 1] +

2a r3 2a r2 r2 2ar

Eu

“E0 [+ (-8
1 o2 Tl x4 U X—4 U =0
AT r2 2a r 2a

For 3D problem the function” (&,x) has the following form

. 1 ‘% [F+a-a[ (x-& ecux-& eu
Q(f,X)=4—e a A+ =2 2L+ —— | cosm +
r

r? 2a r 2a

(37)

X=8 L EUX"6 | ooy + X343 . £UX3—¢3 cosa

r2 2a r 2 r2 2a r 3

For 1D problem the equation (21) takes a form
02T (¢,x) 0T (&,x)

a—2"1 4+ gu —> = =J(&,x 38
P ™ (€.x) (38)

where X = x.

To determine the fundamental solution at first #odowing equation is
considered
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2 * *
a dT—Z(X) + U dT—(X) =0 (39)
dx dx
The substitution is introduced
T (x) = e™ (40)

wherer is a constant value.

On the basis of (40) the following fundamental solu of equation (1) for 1D
problem is proposed

. ) %e_ 9, x-£<0

T (&%) = (41)
1 -0 1
21 © Ty xR0

Additionally, the heat flux resulting from fundantahsolution

G Ex) = -4 % (42)

is calculated

G(6) = £ sgrlx-g)e = 43)

Summing up, fundamental solutions for equatiora(t)the following

- Y (g
- i e a (X ) , X_<(7< 0
) 2
T(6x) = , 1D problem
Eu
-8 (g
i e a (X ) - i, X—E> 0
24 A
_ fu(xl_ﬂ)
——e 22 K, eury 2D problem
. 27 A 2a
T'(&,x) = (44)
Eu
- [+ -8
1 o2 , 3D problem
AT AY
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while the heat fluxes resulting from the fundamestdutions are of the form

q(&x) = % sgn(x—¢)e

_Eu(x—&)

TEx=Le 22
4T1a

Kl(é‘urJ X~ cosaz} ,
2a r

q(&x =

47rr

X~ L EUX—6 cosa, + X3~ ¢3
r? 2a r r?

r2

Conclusions

{5

gu
1 e‘z [r +(x,-&)] { (Xl_gl N

, 1D problem

Kl(gurj L{l:| COSO']_ +
2a r

2D problem (45)

EUXTh L EUY oy
2a r a

+ QL{%J cosag} , 3D problem

2a r

It is well known, that the boundary element metkad be applied for numeri-
cal solution of optional equation under the assionpthat the fundamental solu-
tion is known. In the paper the fundamental sohgior 1D, 2D and 3D problems
for elliptic equation with source term dependentlomfirst derivative of unknown

function are derived.
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