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Abstract. The damage evolution occurring in a set of elements located in the nodes of the 
supporting two-dimensional grid is analysed within the stochastic approach. The element-
strength-thresholds are drawn from a given probability distribution and the elements are 
treated as fibres within the Fibre Bundle Model. If an element fails, its load has to be trans-
ferred to the other intact elements. For different grid geometries we compare the evolution 
of the number of intact elements under the load with respect to three different load transfer 
rules: the global, the local and recently introduced so-called Voronoi load transfer rule. Our 
example system is an array of nanopillars. 

Introduction 

An evolving damage is an irreversible process causing the progressive destruc-
tion of the system components. The formation of fractures is initiated by the local 
microcracks, which grow when the local stress exceeds the threshold strength of 
the material. At some concentration, microcracks start to act coherently to enhance 
the local stress and induce more failures. 

Knowledge of the fracture evolution up to the global rupture and its effective 
description is important for the analysis of the mechanical behaviour of the sys-
tems in response to the applied loads. From the theoretical point of view the under-
standing of the complexity of the rupture process has advanced due to the use of 
lattice models. An example of great importance is the family of transfer load mo 
dels, especially the Fibre Bundle Model (FBM) [1-5]. In the FBM a set of elements 
(fibres) is located in the nodes of the supporting lattice and the element-strength- 
-thresholds are drawn from a given probability distribution. After an element has 
failed, its load has to be transferred to the other intact elements. Three different 
cases are considered: the global load sharing (GLS) - the load is equally shared by 
the remaining elements, the local load sharing (LLS) - only the neighbouring ele-
ments suffer from the increased load and the Voronoi load sharing (VLS) - the 
extra load is equally redistributed among the elements lying inside the Voronoi 
regions [6, 7] generated by a group of elements destroyed in subsequent intervals 
of time [8, 9]. 
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Our paper is motivated by uniaxial tensile experiments on nanoscale materials 
that confirm substantial strength increase via the size reduction of the sample [10-
-13]. Especially studies on arrays of free-standing nanopillars subjected to uniaxial 
microcompression reveal the potential applicability of nanopillars as components 
for the fabrication of micro- and nano-electromechanical systems, micro-actuators 
or optoelectronic devices [10]. The aim of this contribution is to study the failure 
progress in an array of vertically oriented, and taper-free metallic nanoscale pillars 
subjected to an applied load. To illustrate the behaviour of the system, we map the 
array of nanopillars onto the surface with two-valued height function which corre-
spond to intact and damaged pillars. 

We apply the FBM to simulate failure by stepwise accumulation of the de-
structed pillars and we compute the number of time-steps elapsed until the array of 
pillars collapses. Numerical examples are presented to demonstrate the dynamic 
transformation of the rough surface evolving between two flat states: from all in-
tact to all deformed pillars. 

1. Mathematical model 

Consider an array of N  pillars located in the nodes of the supporting two di-
mensional lattice. The ensemble of pillars is subjected to an instantaneous longitu-
dinal load F  which is kept constant in time with a time step t∆  considered here as 
a time scale. Under the work regime the pillars remain intact or some of them are 
damaged. Let ( )dn τ  denote the number of pillars damaged at the time t tτ= ⋅ ∆ . 

The number ( )iN τ  of intact pillars and the cumulative number 

( ) ( ) ( ) ( )1 2 1d d d dN n n nτ τ= + + + −�  of pillars damaged prior to τ  evolve in 

time with the constraints: ( ) ( )i dN N Nτ τ= + , ( ) ( )0i dN N N= = ∞  and 

( )0 0dN = . To each pillar kx  we assign a critical load kσ  which is randomly dis-

tributed according to a distribution kP . When the load ( )kf τ  applied on a pillar 

kx  is bigger than kσ , the pillar crashes. Any damage reduces ( )iN τ  and causes 

a further increase of local loads. 

1.1. The load transfer rules 

Since the load value F  applied at each time τ  remains constant and iN  dimin-

ishes the load f  locally felt by each pillar in subsequent time increases by an 

amount fδ . This load increase is not uniform with respect to all the intact pillars, 

as it is assumed in the GLS version of the FBM, nor restricted to a nearest neigh-
bourhood of the destroyed pillar in accordance with the LLS rule [2].  
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The VLS rule for the load-increase allocation is defined as follows [9]. A set of 

( )iN τ  pillars is split into ( )1dn τ −  subsets grouping together pillars lying inside 

the Voronoi regions generated by ( )1dn τ −  pillars destroyed in the time 1τ − . 

The load, previously carried by each of the damaged pillars is now equally distrib-
uted among the pillars belonging to the appropriate Voronoi region. More precise-
ly, if lV∆ , with k  intact pillars,  is the Voronoi region of the pillar destroyed at 

the site lx  then the load ( )1lf τ −  is equally redistributed, with 

( ) ( )1 /lf f kδ τ τ= − , among all the intact pillars inside thelV∆ . 

1.2. Two dimensional lattice geometries 

As it was already mentioned we locate the pillars in the nodes of two dimen-
sional  lattices. In this work we analyse only regular arrangements, namely triangu-
lar, square and hexagonal symmetries shown in Figure 1. The lattice is represented 
by a set of nodes and edges connecting the pairs of neighbouring nodes. The dis-
tance between two nodes is defined as the number of edges contained in the short-
est possible path between these nodes. Aforementioned lattices differ from each 
other in respect to so-called coordination number z  of a node which is defined as 
the number of its nearest neighbours. 

 

       
Fig. 1. Lattice geometries: a) hexagonal, b) square, c) triangular 

1.3. The rough surface representation of the damage evolution  

We map the array of nanopillars onto the lattice with two-valued height func-
tion ( )mh τ :  
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Within this mapping the dynamics of the model can be seen as a rough surface 
evolving between two flat states: starting with an initially flat specimen we apply 
the load, thus the pillars start to be destroyed and after the last pillars fail the sur-
face becomes flat. Figure 2 illustrates such surface for some time τ . Thus, the way 
the number ( )iN τ  of intact pillars changes under the load can be characterised by 

the surface width [14, 15], defined as  

 2 1 2

1

( ) [ ( ) ( ) ]m
m N

W N h hτ τ τ−

≤ ≤

= −∑          (2) 

where ( )h τ  is the average height over different sites at time τ . 

 

 
Fig. 2. An example of rough surface with two-valued height function defined by (1).  

Illustration for the set of nanopillars on the square lattice   

2. Numerical modelling 

We realised numerically the dynamic formation of the rough surface for two 

system sizes: 3105.2 ×≈N  and 410≈N . Calculations have been done for three 
types of lattice, namely for hexagonal, square and triangular symmetries. In order 
to obtain accurate results simulations have been performed many times. 

Average values of time steps of damaging process are shown in Table 1. As 
might be expected the geometry of lattice is irrelevant for the GLS scheme. In this 
case we obtained almost equal mean values of time steps of the damaging process 
for different lattice geometries. For the LLS scheme the damage process is the 
fastest for a triangular lattice and the slowest for a hexagonal lattice, so the greater 
number of neighbours the faster the damage process. Similarly to the GLS, for the 
VLS rule the damaging process lasts almost the same number of time steps irre-
spective of lattice geometry.  
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In general, as can be seen in Table 1, the damage process is the fastest for the 
GLS scheme and slowest for the LLS scheme. Thus, the VLS rule is intermediate 
form of load transfer between these extreme cases.    

Table 1  

The mean values of time steps of damaging process 

System size Lattice symmetry 
Load transfer rules 

GLS VLS LLS 

3105.2 ×≈N  

hexagonal 12.086 16.528 18.480 

square 12.076 16.334 18.147 

triangular 12.022 16.551 16.584 

410≈N  

hexagonal 11.800 17.836 19.764 

square 11.787 17.516 19.296 

triangular 11.797 17.826 17.521 

 
The parameters of the model introduced in Section 1 were the random critical 

loads kσ  with theirs probability distribution functions kP , ,,,2,1 Nk �=  and the 

total load NfF ⋅= 0 . Here, ( )0 0f f τ= =  is the initial local load. In our simula-

tions 0 1f = . Since the pillars are mechanically independent we assume that kσ  are 

quenched random variables uniformly distributed on [ ]σσσσ ∆+∆− 00 , , with 

0 01.65 1.65fσ = ⋅ =  and 00.75 0.75fσ∆ = ⋅ = . We consider the following proper-

ties resulting from the VLS rule:  
– evolution of the number of damaged pillars ( )dn τ , 

– the number of intact pillars per Voronoi region( ) ( )i i V
n Nτ τ= . 

These properties are distributed randomly and we are interested in how they 
vary in time. Next we investigate the statistical characteristics of ( )in τ  and 

( )dn τ . For this purpose we numerically construct distributions of these quantities 

for different lattice geometries as well as for different system sizes.  
Figures 3 and 4 show the surface width 2( )W τ  for the VLS and the LLS 

schemes, respectively. From Figure 3 we see that for the VLS rule geometry of 
lattice is irrelevant, because values of surface width are almost the same for differ-
ent lattice types. For LLS scheme in the initial stages the values of 2( )W τ  behaves 

similarly irrespective of lattice type. Since the value of 2( )W τ  reaches maximum, 

the values of 2( )W τ  for a triangular lattice start to vary from those obtained with 
the use of square and hexagonal ones. 
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Fig. 3. The mode of surface width (2) vs. τ  with the VLS rule for an array of 410  pil-
lars. Comparison of lattice geometries: hexagonal (circle), square (square), triangular (di-

amond) 

 

 

Fig. 4. The mode of surface width (2) vs. τ  with the LLS rule for an array of 3105.2 ×  
pillars. Comparison of lattice geometries: hexagonal (circle), square (square), triangular 

(diamond) 

Figures 5 and 6 show the modes of the surface width 2( )W τ  obtained within 
three different load transfer rules. From these Figures we see that almost half of 
the time the dominant value of 2( )W τ  for the VLS rule lies between the lines cor-
responding to the GLS and the LLS rules. For the remaining time the behaviour of 
the VLS and the LLS is similar however the numerical values predicted by these 
rules differ.  
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Fig. 5. The mode of surface width (2) vs. τ, for an array of 3105.2 ×  pillars on the hexag-
onal lattice. Comparison of load transfer rules: the GLS (square), the LLS (diamond) and 

the VLS (circle), the modes are taken from 103 samples for each rule 

 

Fig. 6. The mode of surface width (2) vs. τ, for an array of 410  pillars on the triangular 
lattice. Comparison of load transfer rules: the GLS (square), the LLS (diamond) and the 

VLS (circle), the modes are taken from 103 samples for each rule 

The quantities of main interest are: ( )dn τ  (number of damaged pillars) and 
( )in τ  (number of intact pillars per Voronoi region).  
Figures 7 and 8 illustrate the evolution of the mean value of ( )dn τ  for the VLS 

and the LLS rules, respectively. In Figure 7 we compare the results obtained with 
the VLS rule for hexagonal, square and triangular lattices. Throughout the evolu-
tion the results obtained for aforementioned lattice geometries are very similar to 
each other. In the case of the LLS rule, as we can see in Figure 8, values of ( )dn τ  
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for hexagonal and square lattices are similar to each other. For the triangular lattice 
in the middle stages the number of damaged pillars is greater in compare to the 
hexagonal and square ones. In the final stage of experiment ( )dn τ  decreases rap-
idly for triangular lattice, while for the hexagonal and square ones this process is 
more smooth. 

 

 
Fig. 7. Evolution of the average number of damaged elements dn  with the VLS rule. 
Comparison of lattices: hexagonal (circle), square (square), triangular (diamond). Here, 

410≈N  and the averages are taken over 103 samples 

 
Fig. 8. Evolution of the average number of damaged elements dn  with the LLS rule. 
Comparison of lattices: hexagonal (circle), square (square), triangular (diamond). Here, 

3105.2 ×≈N  and the averages are taken over 103 samples 

In Figures 9 and 10 we show the evolution of the mean value of ( )dn τ  for tri-
angular and the hexagonal lattices. However these Figures present the difference of 

dn  for the GLS, the LLS and the VLS rules. In these cases throughout the evolu-
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tion the results of VLS are closer to these of the LLS than to the result of the GLS. 
Within the GLS rule ( )dn τ  grow rapidly before the system fails whereas both, the 
VLS and the LLS rules predict rather smooth extinction of the quantity of de-
stroyed pillars.  

 

 

Fig. 9. Average number of damaged pillars dn  vs τ  for hexagonal lattice. Comparison 

of load transfer rules: the GLS (square), the LLS (diamond) and the the VLS (circle), 
410≈N  and the averages are taken over 103 samples 

 
Fig. 10. Average number of damaged pillars dn  vs τ  for triangular lattice. Compari-

son of load transfer rules: GLS (square), LLS (diamond) and VLS (circle), 3105.2 ×≈N  
and the averages are taken over 103 samples 

Our second quantity of interest, ( )in τ  is computed for the population of 103 
arrays of 104 pillars and thus it gives the results for the ample variety of Voronoi 
regions. This quantity measures the typical number of pillars which share the load 



T. Derda, Z. Domański 14

carried by one, previously destroyed pillar. In Figure 11 it has been shown compar-
ison of number of intact elements ( )in τ  per Voronoi region for different lattice 
types. However, the evolution of ( )in τ  is similar for these lattices, there is 
a noticeable distinction. Especially in the early stages, the value of ( )in τ  is or-
dered according to the values of ,z  namely it is highest for triangular lattice 

)6( =z  and lowest for hexagonal lattice ).3( =z   
 

 
Fig. 11. Average number of intact elements in  per Voronoi region vs τ  with the VLS 

rule. Comparison of lattices: hexagonal (circle), square (square), triangular (diamond), 
410≈N  and the averages are taken over 103 samples 

Conclusions 

Numerous works have been done on the FBM generalisation. Apart from the 
previously mentioned two extreme approaches, the GLS and the LLS, there are 
also mixtures of them and models with long-range load transfer rule [16]. Besides 
the FBM, other approaches were used to study the fracture evolution in solids me-
chanics [17, 18]. Especially the models with a variable range of interactions.  

Depending on the stage of load exposure the damage evolution according to the 
VLS rule behaves like the GLS (early stage) or the LLS (later stage) rules. It is 
worth to mention that the Voronoi volumes vary in time and so the VLS is range-
variable rule.  

In the present work, the regular tessellations and different load transfer rules 
have been exploited to analyse the damage evolution of the family of nanopillars. 
Even though the pillars are mechanically independent their arrangements can in-
duce a kind of correlated-damage-evolution, especially seen in the framework of 
the VLS rule.  
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