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Abstract. In this paper the tensor interpolation by polynomials of several variables is
considered. The effective formulas for polynomial coefficients for arithmetical case were
obtained.

Introduction

The formulas of tensor interpolation by polynomials of several variables are
unknow in the interpolation methods [1]. Using the Kronecker tensor product of
matrices [2, 3] the polynomial tensor interpolation formula was given in the pre-
vious articles [4, 5]. In this paper we considere the arithmetical case of the nodes
matrix.

The Polynomial Arithmetical Tensor Interpolation

The coefficients matrix [a; ; | [Wil---ik ] of the polynomial arithmetic tensor in-

terpolation

W(X,,.... X)) X X[

- Z:05]'13171,--»0§j1< <Pk aj1-~-jk
are unknow.

The results matrix [(wl)il...(wk)ik]:[wil_._ik] and the nodes matrix

[(Xl)i1 x..x(X, )ik]: [Xlil"’ink] are know and

Xy, = X0 +i4y, 0<i<p
Xoi, = Xo0 T 1A, 0<i, < p,
Xpip = Xpo T i Ay 0<i < py
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where A, is a common difference of X i, sequence.

Fact 1. For the arithmetical sequence X,= X, +iA (i=0,1,..., p) we have [5]

Hl :(Xp _Xl)."'.(Xl"'l_Xl).(Xl_Xl—l)."'.(Xl_XO):
(p=DA-...-A-A-2A-...iA=
(p—i)IAPTIAT = (p—i)lilAP

Lemma 1. For integers 1< g <1< p we have

pP—q
ZISK1<K2 ,,,,, <K,§ptq(K1""’K’)=(l_qjtq(l’z""’p)

where T, is the symmetric polynomial of q - order.

Proof. For the numbers 1<oy <o, <...<o, < p from sequence (K;,K,,....K;)

we have p-I remaining values disposed to g-I places. So, each component
0,0l ... 0, of symmetric polynomial t,(L2,...,p) is repeated in the left hand

rP—q) .
sum times.
l-q

Lemma 2. For integers 1< g < p we have
t,(1.2,...0,....p)=7,(1.2,...,p)—it,,(1,2,...,i,..., p)

where the symbol i means omitting the variable .

Corollary 1. For integers 1< g < p we obtain
1,120, p) =7,(1.2,0., p) =T, (1,2,..., p)+
T, (1.2, p)+...+(=1)i'T,

Fact 2. For aritmetical sequence X; =X, +iA (i=0,1,...,p ) we have
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! — q
5 pP—q sos _
T (X X sorr Xy ,X[,)=Z( j[Z(—l)‘z Tq_x(l,Z,...,p)jA"Xé !
q=0 l_q 5=0
In this formula we assumme that 0° =1.

Proof. In fact, according to lemma 1 and corollary 1 we obtain

TI(XO’XI"' X X) ZO<k1<k2 <k1<1’Xk1 X/v:

k#zjl2

Dotk atisn Xy + KA. (X +hA) =

kj#i,j=12,..p

Zo<kl<k2 <kl<P(X +7T (kl’ k,)AX(l)_l +

k¢1112

Tz(kl’“"kl)AZX(l)_2 +'“+T1(k1’-“’kl)AX(l)_l) =

JX + Zo<kl<k2 <1<l<p’C(k1, . )jAXé_l+

¢l]12

k¢1112

(20<k1<k2 <k,<p’C2(k1, .k, )jAzXé_z +...+

20<k1<k2 <k,<p‘l7 (ky,....k )jA] =

k$1]12

(pJX +[ - JT(IZ f DAXI
(p 2} -2 1
L2 PATXI 4 41, (12, A =

’l’jx +Z[” QJ[Z( i ,(1,2,...,p)quxg-q

q
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According to above facts we obtain

Corollary 2. In the formulas of polynomial coefficients of arithmetical tensor inter-
polation [5] we have

n i — 91 )
T, Xy Xy e X ):ZL P49 jZ(_l)Sli»ﬁT (L2, p AT X P
pr—jp X102 R g 2t T py Di ] 1 Yg—s N\ ] 10

q1=0 _]l_ql 51=0

v £ P =4k N Sk 75k 9k Y Pk~ ik =4k
Ty a K g Xy oo Xy )= , D(=Drirt, (L2, p AR X
a=0 \ Px —Jr — 4k Js=0
and
— P\ 4
N

(_1)j1+...+jk

( )il +..H,
Jiedi T Alpl Alfk 0<i <py....,.0<i <py U

P — 9, ,
3 SRR CTEERAE
a=0 \P1 =174 Js=0

Pk — Gk ,
S B v 0 pos g
4=0 \Px ~ Jk Tk

5,=0 )

In above formulas we assumme that 0° =1

Conclusion

In this article the effective formulas for the polynomial coefficients of arithmet-
ical tensor interpolation were obtained. Only the values of symmetric polynomials
for natural numbers t,(1,2,..., p) are necessary.
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