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Abstract. Classical finite difference method (FDM) is typically used for solving Navier-Sto- 

kes (N-S) equation. However to obtain a solution on irregular grid of points other methods 

have to be applied. Generalized finite difference method (GDFM) is one of the methods that 

my be used to solve mentioned problem. In this paper N-S and heat transfer equation have 

been solved using the GFDM. Results of numerical solutions for cooling processes with 

convection move in two-dimensional region are presented. 

Introduction 

Cooling process modeling for a number of technological processes (heat treat- 

ment, casting) requires the consideration of convective motion of the coolant. The 

presented model considers an area filled with liquid-metal medium and the convec-

tive motions caused by temperature changes. In most articles using numerical me- 

thods, in particular the finite differences method, the authors consider a simple geo-  

metry, discretized by rectangular grids. In this paper the numerical model, which 

does not require regular grids, based on a generalized finite element method is pre-

sented [1-3]. 

1. Mathematical model 

Considered region contains two regions - steel element and liquid coolant. Heat 

from the coolant is transferred outside the boundary with using of appropriate boun- 

dary condition. Fluid motion in the coolant caused by vertical gradient of the tem-

perature is taken into account. Initial liquid movement caused by putting the element 

into coolant is neglected. 

The base of mathematical model consists of partial differential equations of 

Navier-Stokes, continuity and heat transport with convective term [3, 4-6] 
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where T [K] is the temperature, t [s] is the time, λ [W/mK] is the thermal conduc- 

tivity, ρ [kg/m
3
] is the density, C [J/kgK] is the specific heat, V [m/s] is the velocity, 

and qv [W/m
3
]  is the volumetric heat source. 
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where Vα [m/s] is the velocity component in the α-direction, µ [kg/ms] is the dyna-

mic viscosity, gα [m/s
2
] is the acceleration component in the α -direction, ε [K

-1
] is 

the volumetric thermal expansion coefficient, Tref [K] is the reference temperature, 

p [Pa] is the pressure. 

The Equations (1), (2) are supplemented by appropriate boundary and initial 

conditions. 

2. Numerical model 

Heat transfer equation solved by generalized finite difference method using 

explicit time scheme, is written as 
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where zj are coefficients of approximation of derivatives for GDFM [3]. 

Above scheme is stabilized, if �t is limited by [3] 
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To stabilize heat transfer equation the Streamline Upwind Petrov Galerkin me-

thod (SUPG) was used 
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where Pe is a local Peclet number defined as Peα = vαrαC/λ, rα is a characteristic 

size of element of grid in the α direction. 
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Navier-Stokes equation (2) is solved only in region filled with coolant with using 

characteristic based split (CBS) scheme. CBS is based on the projection method 

developed by Chorin [7] and described by Zienkiewicz and Codina [6]. In this me-

thod an auxiliary velocity field V
*
 is introduced [3, 7] to uncouple equations (2) 

and (3) 

 ( ) 1*
,,

−+







−−−∆= s

ref VTTgVVVtV ααβαβββαα ε
ρ

µ
 (7) 

Momentum equation was solved by GDFM using implicit time scheme for i-th 

node of grid 
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Pressure by solution of following Poisson equation is obtained 
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Above equation for i-th node in GDFM convention takes following form 
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The final velocity field is corrected by the pressure increment  
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The solution of equation (11) in GDFM for i-th node is as follows 
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3. Examples of calculation 

Temperature distribution and movement of coolant were analyzed for the follow- 

ing parameters: area of coolant 0.1 x 0.1 m, centrally located steel piece of circular 

cross section R = 0.01 m. Following boundary and initial conditions were introduced 

for heat transport equation: the Newton boundary condition on external boundary 

with α = 1000 W/m
2
K, T∞ = 375 K, the ideal contact between steel element and 

coolant on internal boundary, (IV boundary condition on internal boundary); the 

initial temperature of steel element was equal to TH = 1500 K, the initial tempera- 

ture of coolant TC  = 300 K. Material properties of steel C45 and liquid sodium for 

cooling element and coolant have been taken into account respectively. 

Navier-Stokes equation was completed by the following boundary and initial 

conditions: Dirichlet boundary condition on boundaries Vα = 0 m/s, initial veloci-

ties in coolant Vα = 0 m/s. 
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Fig. 1. Velocity fields of the coolant: a) t = 1 s, b) t = 5 s 
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Fig. 2. Temperature distribution in the coolant: a) t = 1 s, b) t = 5 s 



Natural convection numerical model based on GFD method 95

0.04 0.045 0.05 0.055 0.06

x [m]

0.04

0.045

0.05

0.055

0.06

y
 [

m
]

    

0.04 0.045 0.05 0.055 0.06

x [m]

0.04

0.045

0.05

0.055

0.06

y
 [

m
]

 
Fig. 3. Temperature distribution in the cooled element: a) t = 1 s, b) t = 5 s 

Conclusions 

Generalized finite difference is a method that can be successfully applied to ir-

regular grids. It gives great opportunities when grid adaptation during calculations 

is performed. Because of those qualities GFDM is effective in the modeling proc- 

esses for complex geometries. Presented model may be used to estimate of tem- 

perature fields during cooling process for tools of steel after solidification process. 

It may be adopted to optimization of heat treatment processes. 
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