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Abstract. In this paper, the method of fundamental solutions for Helmholtz eigenproblems 

in an elliptical domain is presented. To find the approximate solution of the problem, the 

Hankel function of the first kind and zero order as the fundamental solution of the Helm-

holtz equation in unbounded domain on the plane was used. Numerical examples illustrating 

the accuracy of the present method are given. 

Introduction 

The transverse vibration of a membrane which occupy the domain S, is gover-

ned by the following equation [1] 
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where 2∇  is the Laplace operator, ρTc =  is the speed of sound, T is the uni-

form tension per unit length of the edge ,S∂ ρ is the density per unit area, ( )tyxw ,,  

is the displacement of the plate point (x,y) at time t. When the free vibration of the 

membrane is considered, a harmonic time dependence of the form tie ω
 is assumed, 

i.e. ( ) ( ) .,,, tieyxWtyxw ω=  Substituting the form of the displacement into (1), the 

Helmholtz equation is obtained 

 022 =+∇ WW Ω ,   ( ) Syx ∈,  (2) 

where TρωΩ = . The equation (2) is completed by boundary conditions. We 

assume here the Dirichlet condition 

 ( ) ( ) SyxyxW ∂∈= ,,0,   (3) 

The differential equation (2) and boundary condition (3) form the Helmholtz 

eigenvalue problem. The problem for elliptic domain S is the subject of this paper. 

Please cite this article as:
Stanisław Kukla, Method of fundamental solutions for Helmholtz eigenvalue problems in elliptical domains, Scientific
Research of the Institute of Mathematics and Computer Science, 2009, Volume 8, Issue 1, pages 85-90.
The website: http://www.amcm.pcz.pl/



S. Kukla 86

1. The method of fundamental solutions 

We solve the eigenvalue problem (2)-(3) by using the method of fundamental 

solutions (MFS). The MFS is a boundary method which does not involve discreti-

zation and integration. The method is applicable to problems for which a funda-

mental solution of the governing equation is known. The basic idea of the method 

is the usage of a linear combination of fundamental solutions with sources located 

at fictitious points outside the domain of the considered problem. 

The fundamental solution of a differential equation is not unique. For the Helm-

holtz equation (2) we take the Hankel function [2, 3] 

 ( ) ( ) ( )( )QPdH
i
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4
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where 
( )( )⋅1
0H  is the Hankel function of the first kind and zero order, ( )QPd ,  is the 

distance between points P and Q, 1−=i . The functions ( )kQyxG ;,  satisfy the 

Helmholtz equation in the domain S for each source points kQ  located outside S. 

In the MFS, we approximate the solution of the problem by a function of the form 
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The approximate solution nw  satisfies the differential equation (2), and it does 

not satisfy the boundary condition (3). The condition can be satisfied approximate-

ly by a suitable determination of the coefficients ,kc  k = 1, 2,…,n. For this purpose 

we use the last square method. First we choose the points iP , i = 1, 2,…,n, located 

on boundary S∂  of the domain S. We determine the coefficients kc  so that the func- 

tion 
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has a minimum. This leads to a homogeneous linear system of equations  
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which can be written in the matrix form as 

 A c = 0  (8) 

where [ ]
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For a non-trivial solution of equation (8), the determinant of the coefficient 

matrix A is set equal to zero, yielding the eigenvalue equation 

 det A(Ω ) = 0 (9) 

Equation (9) with the unknown Ω, is solved numerically. The eigenfunctions for 

the determined eigenvalues Ωm, m = 1, 2,…, are given by (5) where the coeffi-

cients kc , k = 2,…,n, are derived in dependence of 1c  from n-1 equations of the 

system (7). 

For the considered Helmholtz eigenvalue problem the function nw  defined by 

(5), after using (4) has the form 

 ( ) ( ) ( ) ( )∑
=
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where the source points ( )kkkQ ηξ , , k = 1, 2,…,n, are over the domain S. But the 

coefficients of the matrix A are 

 ( ) ( ) ( ) ( ) ( ) ( ) 
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where the collocation points ( )ii yxP , , i = 1, 2,…,n, are located on the boundary 

S∂  of the domain S. 

2. Numerical examples 

We assume that the boundary of the considered membrane domain is an ellipse 

with major and minor semi-diameters equal a and b, respectively. The collocation 

points are uniformly distributed on this ellipse and the source points are uniformly 

distributed on a circle with the radius { }bar ,max⋅= α , α > 1. Geometry configura-

tion of an elliptical domain with the collocation points on the boundary and a cir-

cle with the source points is presented in Figure 1. 

The Hankel function 
( )1
0H  occurring in equations (10, 11) assumes complex values 

and that way the elements of the matrix A are complex. Our goal is to evaluate real 

roots of the complex equation (9). For this purpose the new function F is defined 

as 

 ( ) ( )ΩΩ Adet=F  (12) 

where the symbol ⋅  denotes a modulus of complex number. It is clear that the 

roots of equation (9) are determined by minima of the function F. In Figure 2 an 
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exemplary graph of the function in logarithmic scale for an elliptical domain with 

semi-diameters ratio a/b = 2.0 and 24=n  is presented. Locations of the distinct 

drops indicate the roots of equation (9). 
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Fig. 1. Geometry configuration of the considered domain with collocation points Pi 

on the ellipse and source points on Qj the circle 
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Fig. 2. Logarithmic values of modulus of the determinant detA(Ω ) as a function of Ω 

for the Helmholtz operator in the elliptical domain with semi-diameters ratio a/b = 2.0 
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To estimate the MFS accuracy, an example of the Helmholtz eigenvalue prob-

lem in a circular domain will be solved. In this case the eigenvalues are the roots 

of the equation [3] 

 ( ) 0=ΩmJ ,  m = 1, 2,… (13) 

A sequence of the eigenvalues for each m can be obtained. First members of the 

sequences are numerically determined by finding the local minima of the function 

( )ΩFlog , where ( )ΩF  is given by equation (12). The calculations were performed 

for various numbers of source points ).24;20;16( =n  The comparison of the results 

obtained by the MFS with exact values obtained as roots of equation (13) is pre-

sented in Table 1. Note that the numerical calculation by MFS with small number 

of the source points gives the results with a larger error and can lead to omission of 

eigenvalues. The comparison of the results obtained by MFS and the exact eigen-

values shown that the absolute error for n = 24 is not larger as 10
−5

. 

The eigenvalues of the Helmholtz operator are the frequency parameters of free 

vibration of a membrane. The first seven frequency parameter values of the elliptic 

membrane with clamped edge are presented in Table 2. The calculations are per-

formed for various values of semi-diameters ratio a/b of the ellipse. The frequency 

parameters obtained by using MFS were compared with the eigenvalues determined 

by the finite element method in the paper [1] by Buchanan and Peddieson. For assu- 

med number of sources n = 24 in MFS a small differences of the results calculated 

by using both methods are observed. 

Table 1. Eigenvalues  Ωn  (n = 1,…,10) of the Helmholtz operator in a circular domain 

obtained by the MFS for n = 16; 20; 24 and exact eigenvalues obtained 

as roots of equation (12) 

 
MFS 

n = 16 

MFS 

n = 20 

MFS 

n = 24 

Exact 

eigenvalues 

Ω1 2.40483 2.40483 2.40483 2.40483 

Ω 2 3.83172 3.83171 3.83171 3.83171 

Ω 3 5.13560 5.13562 5.13562 5.13562 

Ω 4 5.52005 5.52008 5.52008 5.52008 

Ω 5 6.37893 6.38014 6.38016 6.38016 

Ω 6 7.01522 7.01558 7.01559 7.01559 

Ω 7 7.58199 7.58809 7.58834 7.58834 

Ω 8 8.40860 8.41726 8.41724 8.41724 

Ω 9 8.65317 8.65374 8.65373 8.65373 

Ω 10 – 8.76646 8.77148 8.77148 
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Table 2. Frequency parameters  Ωn  (n = 1,…,7) of the elliptic membrane for various values 

of semi-diameters ratio b/a of the ellipse 

 
a/b = 1.5 a/b = 2.0 a/b = 3.0 

MFS FEM* MFS FEM* MFS FEM* 

Ω 1 2.03911 2.039 1.88858 1.889 1.76311 1.763 

Ω 2 2.91562 2.917 2.50508 2.508 2.14359 2.148 

Ω 3 3.84097 3.850 3.42590 3.427 2.98058 3.072 

Ω 4 4.78926 4.828 3.99047 4.000 3.42586 3.477 

Ω 5 5.10279 5.104 4.58516 4.584 3.68419 3.697 

Ω 6 5.74644 5.769 4.98843 4.990 4.04413 4.130 

Ω 7 6.02787 6.127 5.54225 5.561 4.84154 4.821 

the results by FEM are given in the paper [4] 

Conclusions 

In the paper, the application of the method of fundamental solutions to the Helm- 

holtz eigenvalue problem in the elliptical domain has been presented. As the fun- 

damental solution of the Helmholtz equation in the plane, the Hankel function of 

the first kind and zero order was used. In order to determine the eigenvalues, the 

minimum of a real function which is the logarithm of modulus of a complex function 

was found. The source points occurring in the approximate formula of the solution 

can be selected on a circle outside of the considered elliptical domain. The compa-

rison of numerical results shows that high accuracy of the calculation is achieved 

for 24 sources. 
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