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Abstract. In the paper mathematical and numerical model of air convection in 3D region is 

considered. Governing equations of the model are presented. Main assumptions of numeri-

cal approach are discussed. Finite Element Method (FEM) with Characteristic Based Split 

(CBS) scheme is used to solve the problem. Two examples of numerical calculation are 

presented and discussed. 

Introduction 

Natural convection is a phenomenon in which the fluid motion is not generated 

by any external source (like a pump, fan, suction device etc.) but only by density 

differences in the fluid induced by temperature gradients. In natural convection, 

fluid receives heat in the vicinity of a heat source, becomes less dense and rises. 

The surrounding, lower-temperature fluid then moves to replace it. This cooler 

fluid is then heated and the process continues leading to convection cells forma-

tion. This process also transfers heat energy from the bottom of the convection cell 

to top. The driving force for natural convection is buoyancy, a result of differences 

in fluid density. 

 

     

Fig. 1. The geometry, the boundary and initial conditions of the problem 

a)   b) 
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Natural convection in a differential sidewall-heated air-filled enclosure is a basic 

model for simulating various classes of thermal engineering systems [1]. For two 

past decades a large number of investigations have been conducted, mostly for two- 

dimensional enclosures. A set of benchmark solutions was proposed for various 

Rayleigh number 10
3÷10

6 
for a two-dimensional square cavity for which horizontal 

walls are insulated [2]. 

Presented paper examines numerically the effect of the thermal boundary con- 

ditions at the vertical walls (x = 0 and 0.1 m) on the characteristics of three-dimen-

sional fields in a differentially heated cubical enclosure (Fig. 1a), while other walls 

are thermally insulated. Additionaly numerical simulation was performed with cir-

cular heated region on the bottom wall while the others were insulated (Fig. 1b). 

1. Mathematical model 

The flow is governed by the time-dependent, incompressible Navier-Stokes (1) 

and energy equations (2). The Boussinesq approximation is invoked for the fluid 

properties. Set of equations contains also a continuity equation (3). 
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where T [K] means temperature, ui [m/s] is velocity component, t [s] - time, λ 

[W/(mK)] - thermal conductivity, � [kg/ms] - dynamic viscosity, c [J/(kgK)] - specific 

heat, ρ [kg/m
3
] - density, gi [m/s

2
] - acceleration component, β [K

−1
] - volumetric 

thermal expansion coefficient, Tref [K] indicates reference temperature. 

Equations (1-3) are completed by the Dirichlet and Neumann boundary condi-

tions  

 bTT =Γ∈ :1x  (4) 

 bqT =⋅−Γ∈ gradnx λ:2  (5) 

and following initial conditions 

 0,:0,0: 031 ====Γ∈ − ii uTTtux  (6) 

 0,:0 0 === iuTTt  (7) 

where Tb [K] is known boundary temperature, qb [W/m
2
] - heat flux normal to the 

boundary, T0 [K] - initial temperature. 
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2. Numerical model 

The weighted residual method [3] for the heat conductivity equation (1) is used 
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Weak form of (9) is obtained 
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The above equation is discretized over space using Petrov-Galerkin method [4-6]. 

For the single finite element one can write 
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where iN  is linear shape function of the finite element and iw  [4] can be written as 

follows 
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where hi is element size in the direction of velocity vector [7], γi and Peclet number 

Pe
i
 are calculated using following formulas 
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Integral terms from (10) can be written in the following matrix form 
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where: K
e
 is element heat conductivity matrix, A

e
 - advection matrix, M

e
 - heat 

capacity matrix and B
e
 - right hand side vector. 

After procedure of discretization over time (Euler backward scheme) and agre-

gation of the discrete model we obtain global finite element equation 
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We solve momentum equation (1) with use of characteristic based split (CBS) 

scheme which is based on the projection method of Chorin [8] as described in 

Zienkiewicz and Codina [9] and Zienkiewicz and Taylor [10]. In this method an 

auxiliary velocity field u
*
 is introduced to uncouple equations (1) and (3) 
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The final velocity field is corrected by the pressure increment so that is diver-

gence free 
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By taking the divergence of (17) we arrive at the following Poisson equation 

for the pressure 
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We apply the standard Galerkin procedure for (16-18). 

2. Example of calculations 

Computer program using finite element method has been made on the base of 

theoretical assumptions. Finite element mesh was created with use of GMSH gene-

rator. It contained 75434 nodes and 422873 tetrahedrons. Considered region was 

filled with air. Material properties used in calculations are shown in Table 1. 

Rayleigh and Prandtl number of the flow was calculated with use of following 

relations 
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Table 1. Material properties of air 

Material property Value 

λ [W/(mK)] 2.7e-2 

ρ [kg/m3] 1.1e-0 

c [J/kg] 1.0e-3 

� [kg/(ms)] 1.9e-5 

β [1/K] 3.3e-3 

 

Calculations were made at Ra = 10
6
 and Pr = 0.7. During the first case of calcu-

lation left vertical wall (x = 0 m) was cold (TC = 0 K) and right vertical wall (x = 

= 0.1 m) was hot (TH = 13.096 K). Other walls were insulated. In the second one 

all walls were insulated except of circular region of radius r = 0.02 m located in 

the centre of the bottom wall (y = 0 m) which was heated up to TH. 

 

       

Fig. 2. Velocity (a) and temperature (b) of the air (1st case of calculation) after 18 s 

The velocity and temperature field obtained from first case of calculation are 

displayed in Figure 2. At this Rayleigh number, the fields can be characterized by 

the presence of thin thermal and hydrodynamic boundary layers near the isothermal 

walls and an almost-stagnant central core. The heat transfer at the isothermal walls 

is reduced due to insulation of horizontal walls. 

a)  b) 
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Fig. 3. Velocity (a) and temperature (b) of the air (2nd case of calculation) after 12 s 

The velocity and temperature field in the second case are displayed in Figure 3. 

Symmetrical pattern of flow is showed in Figure 3a. Stream of the hot air moves up 

from the bottom to the top, where it forms characteristic shape. It well corresponds 

to temperature field showed in Figure 3b. 

Conclusions 

Presented mathematical and numerical model of the 3D non-isothermal flow 

in the cube is the base of further work. It will focus on modelling solidification 

of binary alloys process with motion of the liquid phase and shrinkage cavities 

formation. 
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