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Abstract. In the paper a chance constrained linear programming problem is considered 

in the case of join chance constraints with random right hand sides. It is assumed that due to 

its complex stochastic nature the problem cannot be reduced to any deterministic equivalent 

problem. In such a case a Monte Carlo method involving evolutionary algorithms with soft 

selection are proposed to solve the problem. The simulation results are presented and 

discussed. 

Introduction 

Chance Constrained Programming (CCP) or, more general, stochastic programm- 

ing deals with a class of optimization models and algorithms in which some of the 

data may be subject to significant uncertainty. Such models are appropriate when 

data cannot be observed without error or evolve over time and decisions have to be 

made prior to observing the entire data stream. The concept of CCP was introduced 

in the classical work of Charnes and Cooper [1]. Now CCP belongs to the major 

approaches for dealing with random parameters in optimization problems. Typical 

areas of application are engineering design applications, see [2], finance (e.g.[3]),  

budgeting [4, 5] or portfolio analysis [6]. In models built for such real-world prob-

lems uncertainties like product demand, cost of supply, price of a final product, 

demographic conditions, currency exchange rates, rates of return etc. enter the 

inequalities describing the natural constraints that should be satisfied for proper 

working of a system under consideration. 

Stochastic optimization problems belong to the most difficult problems of ma-

thematical programming. Most of the existing computational methods are applica-

ble only to convex problems. There are, however, many important applied optimi-

zation problems which are, at the same time, stochastic and non-convex. Many of 

them are also multi-extremal problems. Discussion of various computational aspect 

of CCP problems can be found in [6-8] or [9]. In our paper the method of evolu- 

tionary search with soft selection is proposed in order to find a satisfactory solution. 

The statistical performance of such a solution is studied via computer simulations. 
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1. Chance Constrained Linear Programming Problem 

Let us consider a classical (deterministic) linear programming problem: 

maximize  f(x1,…,xn) = c1x1+c2x2+ …+cnxn 

Subject to the following constrains (s.t.):  

ai1x1+ai2x2+ …+ainxn ≤ bi   i = 1,…,m 

x1≥0,…,xn≥0 

where f  is the objective function, x = [x1, x2, …,xn]
T
 is the decision variable vector,  

A = [aij]mxn is the matrix of (technical) coefficients of the system of linear inequali-

ties, a coefficient vector b = [b1, b2,…,bm]
T
 will be addressed as a right hand side 

of the constraints system, c = [c1, c2,…,cn ]
T
 is a vector of the objective function 

coefficients. 

As we have mention before, in many applications the elements of the tuple (A,b,c) 

cannot be considered as known constants. All or part of them are uncertain. Thus 

it is difficult or even impossible to know which solution will appear to be feasible. 

In such circumstances, one would rather insist on decisions guaranteeing feasibili-

ty 'as much as possible'. This loose term refers to the fact that constraint violation 

can almost never be avoided because of unexpected (or simply random) events. On 

the other hand, after proper estimating the distribution of the random parameters, 

it makes sense to call decisions feasible (in a stochastic meaning) whenever they 

are feasible with high probability, i.e., only a low percentage of realizations of the 

random parameters leads to constraint violation under this given decision. It leads 

to CCP formulation of the problem, where the deterministic constraint are replaced 

with a probabilistic or chance ones in one of the two following ways: 

1.1. Individual chance constraints 

maximize  Ef(x1,…,xn) = E(c1)x1+E(c2)x2+…+E(cn)xn 

s.t. 

Pr(ai1x1+ai2x2+…+ainxn ≤ bi ) ≥ qi   i = 1,…,m 

x1≥0,…, xn≥0 

where q = [q1, q2,…,qm], qi ∈ [0,1], i = 1,…,m, is the vector of prescribed values 

of so called probability levels given for each constraint separately. 

1.2. Joint chance constraints 

maximize  Ef(x1, …, xn) = E(c1)x1+E(c2)x2+ …+E(cn)xn 

s.t. 
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Pr(ai1x1+ai2x2+…+ainxn ≤ bi,  i = 1,…,m) ≥ q 

x1≥0, …, xn≥0 

where q ∈ [0,1] is the probability level. 

The value of probability level(s)  is chosen by the decision maker in order to 

model the safety requirements. Sometimes, the probability level is strictly fixed 

from the very beginning (e.g., q = 0.95,0.99 etc.). In other situations, the decision 

maker may only have a vague idea of a properly chosen level. It is obvious that 

higher values of q lead to fewer feasible decisions x, and hence to smaller optimal 

values of expected gain. In some simple cases (especially in case of individual 

chance constraints) the problem can be replaced with its deterministic equivalent, 

see e.g. [4, 9]. 

The main challenge in designing algorithms for general stochastic programming 

problems arises from the need to calculate conditional expectation and/or probabil-

ity associated with multi-dimensional random variables, see [9, 8, 11]. This make 

the CCP problems most difficult problems of mathematical programming. The com- 

putational challenges and methods in the field of optimization under uncertainty are 

addressed e.g. in [8] and [9]. A brief survey on some of the most relevant develop-

ments can be found in [7]. 

In our paper we consider the situation where , due to assumed complex stochas-

tic nature of the problem no deterministic equivalent is available. In order to find 

satisfactory stochastically feasible solution we propose a criterion based on expec-

ted utility of a given solution and adopt an algorithm of evolutionary search with 

soft selection. 

2. Problem formulation 

In our studies we examine the linear programming models in the case where all 

problem describing parameters i.e. the matrix A and vectors b, c, are random with 

the expectations equal E(A) = ΛΛΛΛ, E(b) = ββββ, E(c) = χχχχ. In the sequel such a problem 

will be denoted CCLP(ΛΛΛΛ, ββββ, χχχχ). The performance of the solution found by the 

Monte Carlo method for the CCLP(ΛΛΛΛ, ββββ, χχχχ) is compared with the performance of 

the optimal solution found for the deterministic linear programming problem given 

by the parameters ΛΛΛΛ, ββββ, χ χ χ χ - in the sequel the latter will be denoted by DLP(ΛΛΛΛ, ββββ, χχχχ). 

The decision-maker dealing with the CCLP(ΛΛΛΛ, ββββ, χχχχ) problem should maximize 

both the probability q that a given systems of constraints will be satisfied and the 

expected value of the objective function. However, the goals appear to be contra-

dictory (at least to some extent) and therefore  in our studies we propose to use the 

following index of  performance of a given solution: 

IP(x) = pxU(E(f(x))) 
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where px is the probability that the system of constraints is satisfied when one use 

the solution x, U is a utility function which allow to take into account the decision 

maker preferences connected with both goals. The index IP can be interpreted as 

a conditional expected utility of the expected value of the objective function, under 

the condition that the system of constraints is satisfied. We assume that if the con-

dition is not fulfilled then the utility of any gain equals zero. 

The Monte Carlo method - generally speaking - is a numerical method based on 

random sampling. It is therefore a method which allow to analyze a given decision 

rule in terms of its statistical performance. Thus in our studies the above index of 

performance takes the following statistical form: 
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where NSIP is a number of i.i.d. realizations of CCLP(ΛΛΛΛ, ββββ, χχχχ), Ns is the number of 

successful realizations (i.e. the realizations for which the system of constraints was 

satisfied), fi(x) is the value of the objective function obtained in the i-th random 

realization of the problem. A single random realization of CCLP(ΛΛΛΛ, ββββ, χχχχ) is the 

realization of a random tuple (A,b,c) with the probability distribution satisfying 

the condition  E(A) = ΛΛΛΛ, E(b) = ββββ, E(c) = χχχχ. 
In our simulation  study we take into account the problems with positive objective 

functions and we use the utility function given by: 

)()( ),0[ yyyU ∞= 1  

3. Algorithm of the evolutionary search with soft selection (ES-SS) 

To find the solution to the CCLP(ΛΛΛΛ, ββββ, χχχχ) problem we adopt the algorithm of 

the evolutionary search with soft selection described e.g in [10, 12]. The algorithm 

implemented in our simulations is as follows: 

Step 1. Set the initial population of k vectors vi ε R
n
, i = 1,2,…,k (it is so called 

initial parent population). 

Step 2. Assign to each vector vi , i = 1,…,k, its fitness i.e. the value of the criterion 

SIP(vi ). 

Step 3. Select parent v  by soft selection i.e. with probability proportional to the its 

fitness. 

Step 4. Create a descendant w from the chosen parent v  by its random mutation: 

w = v + Z, where Z is a random n-dimensional vector with coefficients hav-

ing expected value equal to zero and given standard deviation σz. 

Step 5. Repeat steps 3 and 4 for k times to create a new k-element generation of 

n-dimensional vectors (descendants). 

Step 6. Replace the parent population with the descendant population 
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Step 7. Repeat the second to sixth steps for NG times, where NG is a sufficiently 

large number. 

Step 8. Return the last generation and the fitness of its elements. 

In our simulations the initial population in Step 1 was generated as a population 

of mutations of the optimal solution of the DLP(ΛΛΛΛ, ββββ, χχχχ) problem. We also record  

the value of the best fitness achieved during the simulations and the vector v the 

best value was assign to. The latter is the solution of CCLP(ΛΛΛΛ, ββββ, χχχχ) problem found 

by the evolutionary search - it is denoted by xES. The optimal solution for the 

DLP(ΛΛΛΛ, ββββ, χχχχ) problem is denoted by xD . 

4. Simulation study of the solutions performance 

To estimate the performance of the solution xES we compare it with the perfor-

mance with optimal deterministic solution xD in two frameworks: stochastic and 

deterministic (ideal). To do this we propose the following performance indicators: 

• the statistical performance rate: 
)(
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• the rate between the SIP(xES) and the utility of the optimal objective function 

value in deterministic case: 
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The values of the indicators obviously depend on the problem parameters, i.e. 

on the tuple (ΛΛΛΛ, ββββ, χχχχ) and the dimensions of its elements. Thus we compute the va-

lues of the indicators for various values of the parameters and compare its statistical 

characteristics: maximum value, minimum value, median, mean value and standard 

deviation. In order to obtain the statistical data we use the following simulation 

procedure. 

Step 1. Set the parameters n, k, NSIP, NG  and K. 

Step 2. Randomly generate the tuple (ΛΛΛΛ, ββββ, χχχχ). 

Step 3. Solve the DLP(ΛΛΛΛ, ββββ, χχχχ) problem by the simplex algorithm and obtain the 

solution xD , the optimal value f(xD) and SIP(xD) 

Step 4. Solve CCLP(ΛΛΛΛ, ββββ, χχχχ) problem by the ES-SS algorithm  and obtain the solu-

tion xES and SIP(xES ). 

Step 5. Compute and record the values of SPR and SDR for this setup. 

Step 7. Repeat the second to fifth steps for K times, where K is a sufficiently large 

number. 

Step 8. Return: maximum values, minimum values, medians, mean values and stan- 

dard deviations of  SPR and SDR. 

In our research we use the following values of the parameters: NSIP = 500, n = 5, 

10,15 and k = 10, K = 50. In the ES-SS algorithm the distributions of mutations are 

normal with constant standard deviation equal to 0.1. The values of the parameter 

m are drawn from the set {n−2,...,n+5}. The elements of the tuple (ΛΛΛΛ, ββββ, χχχχ) are 
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drawn from the interval [−200,700]. In the SIP procedure the distributions of each 

element of the matrix and both vectors are normal with mean equal zero and stan-

dard deviation being equal to 10% of the value of the element. 

5. Results and final remarks 

In the following tables we present the results of our simulations. The first one  

shows the results obtained for the indicator SPR in case of n = 5,10,15. 

Table 1. Statistical characteristics of SPR, n = 5,10,15 

SPR, n = 5 

Min 

3.49 

Max 

16.11 

Median 

6.51 

Mean 

7.77 

Stand. Dev. 

3.95 

SPR, n  = 10 

Min 

3.07 

Max 

216.87 

Median 

19.28 

Mean 

42.50 

Stand. Dev. 

53.96 

SPR, n = 15 

Min 

6.94 

Max 

98.36 

Median 

66.95 

Mean 

55.56 

Stand. Dev. 

36.64 

 

We can see that the performance of the solution xES  in comparison with the per- 

formance of the deterministic optimal solution xD is very good. The expected utility 

of xES is at least (see first column) three times greater than the expected utility of 

xD . The ratio of the expected utilities may be even greater than 200, see the second 

column of the Table 1. In average, the greater is the number of the decision variables 

n, the greater is the ratio, see columns fourth and fifth. 

Another question is how big is the expected utility of the mean value of the ob-

jective function when we use the solution xES in comparison with the utility of the 

optimal value of the objective function in the ideal, deterministic case. The answer 

is given by the values of the indicator SDR presented in Table 2. 

Table 2. Statistical characteristics of SDR, n = 5,10,15 

SDR, n = 5 

Min 

63% 

Max 

90% 

Median 

87% 

Mean 

85% 

Stand. Dev. 

6.0% 

Number of best generation, n = 10 

Min 

23% 

Max 

85% 

Median 

80% 

Mean 

77% 

Stand. Dev. 

14% 

Number of best generation, n = 15 

Min 

77% 

Max 

86% 

Median 

80% 

Mean 

81% 

Stand. Dev. 

28% 
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We see that the average expected utility amounts to about 80% of the ideal opti- 

mal value. Because the standard deviations are rather small it indicates a very good 

performance of the solution xES . Obtained values of the index SDR show that any 

other algorithms cannot gain much better performance in the stochastic framework. 

The last question addressed in this paper is how many generation should be crea- 

ted to obtain a satisfactory solution. Table 3 provides us with the statistical charac-

teristics of the number of a generation containing best element in our simulations. 

Table 3. Number of the best generation - statistical characteristics, n = 5,10,15 

Number of best generation, n = 5 

Min 

2 

Max 

99 

Median 

23 

Mean 

36.85 

Stand. Dev. 

33.69 

Number of best generation, n  = 10 

Min 

1 

Max 

52 

Median 

17 

Mean 

21.64 

Stand. Dev. 

15.53 

Number of best generation, n = 15 

Min 

1 

Max 

67 

Median 

36 

Mean 

36,16 

Stand. Dev. 

20.65 

 
The first two columns of Table 3 contain the minimal and maximal number of 

generations needed to obtain the element with highest value of expected utility. We 

see that a hundred of generation was always enough - 99 was the maximal value. 

The median and mean of these numbers show that - in average - forty generations 

is sufficient to obtain satisfactory solution for considered CCLP problems. 

Final remarks 

The solution for CCLP(ΛΛΛΛ, ββββ, χχχχ) problem found by the evolutionary search may 

be called satisfactory rather than optimal.  The optimality cannot be proved and we 

even don’t believe that it is optimal. But the solution is relatively easy to find and, 

in considered stochastic framework, much better than the optimal solution found in 

deterministic case. The improvement, measured in terms of average value of statis-

tical performance rate SPR amounts to about 7 (for n = 5) or even to about 60 (for 

n = 15). The solution may be considered as satisfactory especially because of the 

high values of the indicator SDR: its average values are about 80%. Taking into 

account that the standard deviations of random variables disturbing all elements of 

the tuple (ΛΛΛΛ, ββββ, χχχχ) amounts to 10% of its original values, one should not expect 

much more , even when applying more sophisticated solutions. 

 



A. Grzybowski 46

References 

[1] Charnes A., Cooper W.W., Chance-constrained programming, Management Sciences 1959, 6, 

73-80. 

[2] Taflanidis T.T., Beckan J.L., Efficient framework for optimal robust stochastic system design 

using stochastic simulation, Comput. Methods Appl. Mech. Engrg. 2008, 198, 88-101. 

[3] Steuer R., Na P., Multiple criteria decision making combined with finance: A categorized biblio- 

graphic study, European Journal of Operational Research 2003, 150, 496-515. 

[4] Dima I.C., Grzybowski A., Modele optymalizacyjne w problemach budŜetowania w warunkach 

niepewności i/lub ryzyka, [in:] BudŜetowanie, I.C. Dima, J. Grabara (eds.), Prace Naukowe WZ 

PCz, seria monografie Nr 19, Częstochowa 2009, 153-166. 

[5] De P.K., Acharya D., Sahu K.C., A chance-constrained goal programming model for capital 

budgeting, Journal of the Operational Research Society 1982, 33(7), 635-638. 

[6] Norkin V.I., Pug G.C., Ruszczyński A., A Branch and Bound Method for Stochastic Global 

Optimization, Mathematical Programming: Series A and B 1998, 83, 3, 425-450. 

[7] Schuëller G.I., Jensen H.A., Computational methods in optimization considering uncertainties - 

An overview, Comput. Methods Appl. Mech. Engrg. 2008, 198, 2-13.  

[8] Sen S., Stochastic Programming: Computational Issues and Challenges, [in:] Encyclopedia 

of Operations Research and Management Science, 2nd edition, ed. S. Gass, C. Harris, Kluwer 

Academic Publishers, Boston 2001, 821-827. 

[9] Ruszczynski A., Shapiro A., Stochastic Programming, Handbooks in Operations Research and 

Management Science, Vol. 10. Elsevier, Amsterdam 2003. 

[10] Galar R., Soft selection in random global adaptation in Rn: A biocybernetic model of develop-

ment, Technical University Press, Wrocław 1990 (in Polish). 

[11] Sen S., Higle J.L., An Introductory Tutorial on Stochastic Linear Programming Models, Inter-

faces 1999, 29, 33-61. 

[12] Obuchowicz A., Korbicz J., Global optimization via evolutionary search with soft selection, 

Manuscript, available: http://www.mat.univie.ac.at/~neum/glopt/mss/gloptpapers.html 


