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Abstract. In the paper the temperature field determination in the domain of complex shape  
is presented. The boundary of the domain considered is described by the NURBS curves  
and the temperature field in this domain is calculated by means of the boundary element me-
thod. Such approach allows to determine the changes of temperature due to the local  
change of boundary configuration. In the final part of the paper the examples of  
computations are shown. 

1. Boundary element method for Laplace equation 

The steady state temperature field T (x, y) in 2D domain is described by the 
Laplace equation 
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supplemented by the boundary conditions 
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where λ [W/(mK)] is the thermal conductivity, Tb is known boundary tempera-
ture, n is the normal outward vector at the boundary point (x, y), qb is given bound-
ary heat flux, α is the heat transfer coefficient, Ta is the ambient temperature. 
   The integral equation for problem (1), (2) is following [1, 2] 
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where (ξ, η) is the observation point (source point), if (ξ, η) ∈  C then B (ξ, η) is 
the coefficient connected with the local shape of the boundary, if (ξ, η) ∈  Ω then  
B(ξ, η) = 1, T * (ξ, η, x, y ) is the fundamental solution, while 

 ),η, ,ξ( yxq∗ = ),, η,ξ(  λ yxT ∗∇⋅− n  (4) 

and 
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Fundamental solution has the following form 
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where r is the distance between the points (ξ, η) and (x, y) 
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It should be pointed out that the function ),, η,ξ( yxT ∗ fulfils the equation 
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where ),, η,ξ( δ yx is the Dirac function. 
Heat flux resulting from the fundamental solution can be calculated analytically 

and then 
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where 
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while cosα, cosβ are the directional cosines of the boundary normal vector n. 
To solve equation (3) the boundary C of the domain considered is divided into N 

boundary elements and then the approximation of equation (3) has the following 
form 
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For constant boundary elements, namely 
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the equation (11) can be expressed as follows ( i = 1, 2, …, N ) 
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The solution of the system of equations (14), this means the values of temperatures 
or heat fluxes at the boundary nodes, allows to calculate the temperatures at internal 
nodes using the formula 
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2. Description of the boundary and its discretization 

We consider the 2D domain � of complex shape. The segments of its boundary 
are described by the NURBS curves. A n-th degree NURBS curve is defined as [3] 
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where Pj are the control points forming a control polygon, wj are the weights and  
Nj, n (t) are the B-spline basis functions 
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defined for the set of nodes 
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at the same time the values a and b appear n+1 times. It should be pointed out that 
the number of control points equals r+1 and corresponds to the number of nonzero 
basis functions. 

In Figure 1 the domain considered with marked control points P0 = (0, 0.04),  
P1 = (0.06, 0.04), P2 = (0.06, 0), P3 = (0.1, 0), P4 = (0.1, 0.1), P5 = (0, 0.1),  
P6 = (0.03, 0.08), P7 = (0.045, 0.08), P8 = (0.045, 0.07), P9 = (0.075, 0.05), 
P10 = (0.085, 0.05), P11 = (0.085, 0.035) is shown. 
 

 
Fig. 1. Domain considered 

The boundary is described by the following NURBS curves 
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The successive segments of the boundary are divided into N1, N2, N3, N4, N5, N6, N7 
boundary elements. In Figure 2 the boundary nodes under the assumption that  
N1 = 6, N2 = 4, N3 = 10, N4 = 10, N5 = 6, N6 = 12, N7 = 12 are shown. 

 
Fig. 2. Boundary nodes 

3. Determination of temperature field 

It is assumed that λ = 30 W/mK. The following boundary conditions on the 
successive segments of the boundary have been taken into account 
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In Figure 3 the temperature distribution in the domain considered is shown. 
 

 
Fig. 3. Temperature distribution 

It should be pointed out that the boundary element method coupled with the 
NURBS curves introduction is very useful, among others, in the case of shape 
sensitivity analysis applied in the heat transfer process modelling [4, 5]. These 
problems will be in future discussed. 
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