Please cite this article as:

Henryk Piech, Michat Stys$, Serialization of input and output data transfers in parallel structures, Scientific Research of
the Institute of Mathematics and Computer Science, 2007, Volume 6, Issue 1, pages 241-252.

The website: http://www.amcm.pcz.pl/

Scientific Researctf the Instituteof Mathematicand Computer Science

SERIALIZATION OF INPUT AND OUTPUT DATA TRANSFERS
IN PARALLEL STRUCTURES

Henryk Piech, Michat Sty

Institute of Mathematics and Computer Science, Calestwa University of Technology, Poland
email: hpiech@adm.pcz.czest.pl

Abstract. We propose the new interpretation of feature mhtserialization” as a charac-
teristic of scheduling algorithms. In our inter@tidn serialization would be the property
of algorithm referring to accumulating date in geeses as well as to summary procedure
of sending date to chosen place (processor or gspatirectly before their utilization.
We want to practically prove that serialization ¢ealp us to enlargement the effectiveness
of scheduling procedures

Introduction

Communication in a distributed and parallel envinemt is seen as a necessity
relating to an additional loss of time, but necegsa obtain the final effect con-
sisting in the effective shortening of global pregiag time [1]. Communication is
related to the establishment of connections andjtfamtity of information which
is supposed to be transmitted in individual conioecsessions [2]. An essential
thing is to prepare and present data in such athayit will be possible to send it
conveniently (the best as a series) and at oneitintiee largest chunks (serializ-
able) [3]. The more frequent and fragmented thixess is, the more time it will

take. It is even related to establishing the praoesiof connections

1. Indexes and examples of serialization in parallel processes

The possibility of establishing connections betwesmy nodes (processors) is
profitable and it can favourably influence the ¢boning of communication time.
Certainly, the number of connections and informaticansfers depends on the
realization algorithm of concrete task but alsoaorealization algorithm of trans-
fer, i.e. the communication algorithm (Fig. 1). Tleek and message transfer of
threads to processors 2 and 3 follow the realimatioprocess prl,1. The results of
the pr2,1 process will determine the data of tHeSprocess. Thus, they could to
be sent to processor 1 at moment t1 (Fig. 1b). Kewat is not the optimal vari-

ant, because it leads to additional waste of .time

242 H. Piech, M. Sty
a)
Variant 1
processorbrl_,i prii pris pru.: prl,sl t
procemz_w -t
AT
processor3 ' > : - 1
i b
| -
processord : } H# -t
i P
[} [I
[} [I
transfer moments I R t
——H -
t1 t2t3 t4t5

pri j - process with number “j” realized on i-th processo
t; — potential moments of realization of informattcensfer to the 1-st processor

b)
Variant 2
processorbry 3 priz Pris PL4 Pris t
> > -
processor2 P26 pp 7 t
o
[} [}
processor3 Pss 1 Pab t
I T -
[} [}
[} [}
proceS$0r4 |> F4 10 t
T -
[} [[}
[} * [}
transfer moments | i | t
| a— I .
tl t2t3 t4

Fig. 1. Realization ways of information transfentetn processors (variant 1, variant 2)

In variant 1 the moment when all data for the pdrécess will be determined is
anticipated (the moment t5). Then, a connectiorn witocessor 1 is established
and the transfer of data series from the othergssmrs occurs. This feature will
be called the series creation capability (serifilizp It relates to the executed task

Serialization of input and output data transferpamallel structures 243

algorithm in combination with the communication @ighm. The series creation
capability can be expressed by the number of datanto a given process in rela-
tion to the number of independent processes whighte these data:

m n(i)
SLA = 1/mp*Z{l/n(i)* > &i,))D(i,)} 1)

=1

where:
SLA - the series creation capability: serializationtdéac
D(i,j) - data number determined in uniform or aworus units and transferred
directly from the j-th processor to the i-th proges
mp - number of all processes,
n(i) - number of processors feeding informatiofi-tio process,
o(i,j) - transfer factor.

Thus, it is not significant whether the data coment a single or many
processes, however, it is important that the datditectly fed before the initiation
of the i-th process. If the data is transferredierathan directly before the initia-
tion of a given process then they are not taken @uinsideration in the formula
(2). It is taken into consideration thanks to tfansfer factor (i,j).

1,if the data transfer from the j-th processor toittteprocess

o(i,j) =< directly precedes the given process,
0, if the data transfer from the j-th processathii-th process is
earlier or if the process is realized on the j#tbcgssor.

Example 1
The situation presented in Figure 1a and 1b isidensd.

Variant 1

Table 1

Values of transfer factors &(i j)

Table 2
Number of processor s feeding information to the given process n(i)

244 H. Piech, M. Sty

Table 3

Data number transferred to successive processes D(i,j)

Variant 2

Table 4
Values of transfer factors &i,j)

Table 5
Number of processor s feeding information to the given process n(i)

Introducing the exemplifying data to the formula {de receive:

m n(i)
SLAarians = 1/mp* Y {1n(i)* D" &i,)D(i, j} = 1/40*(6*n+4*m+11)

i=1 =1

m n(i)
SLAran2= 1/mp*> {1/n(iy* > &i,)D(i, j} = 1/10(m+n+2) = 1/40%(4*n+4*m+8)

i=1 =1
(2)
Comparing both serialization factors apart fromdbegious inference:
SI—Avariantl> SLAvariantZ

the pace of the serialization factor changes caddtermined by the increase in
the value of m and n data numbers (Fig. 2).

2. Application of analysis of the series creation capability
with referenceto linear transportation algorithms

Serialization of input and output data transferparallel structures 245

It is possible to divide the transportation aldamtinto processes depending on
the data sets used in these processes. Such gaémneof processes is effective
and is conducive to the minimization of interpramscommunication. Thus, it is
possible to separate, for example, the followinacpsses [4]:

1. searching for the minimal unit values of carei@gsts in demand columns
(1proc.),

determination of a transport order (2proc.),

realization of “transports” (3proc.),

verification of a distribution end (4proc.),

division into “priority” and “non-priority” clases (5proc.),

determination of a correction quantity in th@pty class (6proc.),

correction of unit carriage costs of the priprilass (7proc.) and return to
the first process.

Nookwn

Relationship between serialization factor SLA and datanumber
15

145 m14515
14 W 1,4-1,45
ji'f 01,35-1,4
| 125 m13-1,35
1.2 [01,25-1,3
jf m12-1,25
11,05 01,15-1,2
m - 01,1-1,15
W 1,05-1,1

@1-1,05

Fig. 2. Relationship between serialization factad anmber of transferred data
(expressed in their sizes)

The data for process 1 is the matrix size of thie earriage costs and elements
of this matrix (m x n) + 2, where: m is the numbésuppliers and n is the number
of receivers.The data for process 2 are n vectarsthe number of elements equal
to m. Forking this process to the n subprocessds2(®), let us deliver the m+1
data to each of them. Process 3 is the use okthdts from the subprocesses (2.1-
2.n) and let us deliver nx(m+2)+1 data to it. Tletrprocess (process 4) requires
information related to commodities not transfernatijch is registered in the vec-
tor with length of n ((n+1) data). The 5-th procesguires full information on
carriages (it uses (m+1)x(n+1)+2 data). The 6rthcess can also be forked into 6
subprocesses (6.1-6.n). Each of the processesntsld (lata. In process 7 the unit
carriage costs in the priority group are correctétie average number of data can

246 H. Piech, M. Sty

be estimated as m/2*n+1. The graphical picturénefttansportation algorithm can
be presented as it is in Figure 3.

1 2.1 3 4 5 6.1 T e e numbers of processes
t
2.2 6j2 7.1
2.3 6137.2
7.[m/2] > activity of processors
2.n 6.n

Fig. 3. Distribution sample of processes in thagpmrtation task according
to the above description

The transfer factors and the ranges of transfedagd for the example from
Figure 3 are described in Tables 6 and 7.

Table 6
Transfer factors &(i,j)

1proc. 2y _proc. 3proc. 4proc. 5proc. 6proc. 7proc.
processor: 0 1 0 0 0 1 0
processor: 0 0 1 0 0 0 1
................ 0 0 1 0 0 0 1
processor 0 0 1 0 0 0 1
Table 7
Transferred data D(i,j)
1proc. | 2y_proc. | 3proc. | 4proc. 5proc. 6proc. 7proc.
processorl| mxn+2 m+1 m+n+2 n+l | (m+1)x(n+1)+: m+1 m/2*n+1
processorz 0 0 m+1 0 0 0 m/2*n+1
................ 0 0 m+1 0 0 0 m/2*n+1
processor 0 0 m+1 0 0 0 m/2*n+1

The serialization factor for the exemplifying variaof communication
amounts to:

Serialization of input and output data transferparallel structures 247

m n(i)
SLAcamper= 1/mp* > {1/m(i)* > &i,)D(i,)} = 2(m+n)/(5+2n) ()
i=1 =1

[15,0000-20,0000
[10,0000-15,0000
[5,0000-10,0000
n [@0,0000-5,0000

Fig. 4. Relationship between serialization factard data numbers (expressed in their sizes)

The next example is the search algorithm of thertebb path between two
points in an undirected graph. The course of thiblem can be divided into the
following processes:

1. searching for the node in the nearest distarjciedm the current node (starting
point s) (1proc.),

2. verification of the end (the chosen node isethé-point v = t) (2proc.),

3. addition of the found edge to the set of setketdges (3proc.),

4. searching for the node in the nearest distarmme the already selected set and
return to process 2 (4proc.).

The graphical picture of the search algorithm @f shortest path can be shown
in the following way (Fig. 5).

The transfer factors with taking into considerattbe transfer iteration in the
process coded “4” to process “2”, i.e. after thelidon of the successive found
edge, are presented in Table 8.

248 H. Piech, M. Sty

1 2 3 4.1 2 3 4.12 3 4 L 4.1 2 process
> a a > > a a > a a) | progessorl
4.2 4.2 4.2
_ R _ | processor2
4.3 4.3 4.3 processor3
4.4,
4Ak+1 processor(k+1)

Fig. 5. Distribution of processes in the problensedrching for the shortest path between
points s-t, where: k - the number of edges conngatertices s and t

Table 8
Transfer factors &(i,j)
1proc. 2proc. 3proc. 4proc_y
processorl]] 0 0 0 0
processor2 0 1 0 1
...... 0 1 0
processor k 0 0 0 1

After finding out the successive vertex, the nextcgssor is activated to which
information on its distance from the remaining ie$ is transferred. Table 9
illustrates it. Feeding the neighbourhood matrixhwihe nxn size, where n is
the number of vertices, and codes of vertices @fktart and end of the shortest path
to process 1 is required. Process 2 requires fgeatie codes of the current and
last vertex. The addition of the found edge todterent path structure takes place
in process 3. The data number is equal one (itli thhe code of vertex). The dis-
tances from the created structure are used in gsotd.e. the n-elements vector as
well as the vertex code and the graph size in thigaded processor are available.

Table 9
Values of transferred data D(i,})
1proc. 2proc. 3proc. 4proc_y
processorl]] nxn+4 2 1 n+2
processor2 0 2 0 n+2
...... 0 2 0 n+2
processor k 0 0 0 n+2

The value of the serialization factor can be estahas follows:

Serialization of input and output data transferparallel structures 249

m n(i)
SLAcamper= 1/mp*> £ 1/n(i)* > &i,)D(i,)} = 2/1%(n+2)+2/24(n+2)+ ...
i=1 =1

+2/(k)* (n+2)/(2k*(1+2+...+K)) = (n+2)*(1+1/2++1/K)/ (kK*(1+2+...+K)) (4)

Reference to the number of processors does ngtrieflect the ability to create
a series. Another way would be to relate to the memof transfers. This number
will be associated with the connection sessionsnmitwith the number of pro-
cesses. In that case, the serialization factordcbel determined by the following
expression:

SLI = 1/Ipi Dp(i) (5)

where:
Ip - number of connection sessions,
Dp(i) - data number transferred durinth session.

Ip
SLlexampie=L/Ip Y Dp(i) =1/4%(n-1)(M/2*n+3*m+4)

i=1

Ip
SLlecampe=1/Ip Y, Dp(i) =1/4*(n+4)*(1+k)

i=1

Relationship between serialization factor SLA and data number

W 40-50
b30-40
[bJ20-30
m10-20
moO0-10

Fig. 6. Relationship between serialization factord mput data parameters

250 H. Piech, M. Sty

Values of serialization factor SLIin transportation task

[@8000,0-10000,0
W 6000,0-8000,0
[4000,0-6000,0
[12000,0-4000,0
m0,0-2000,0
n-dataparameter @-2000,0-0,0

m-data parameter

Fig. 7. Example 1 - relationship between serialirafactor and data parameters

It is possible to select the level (alpha) of syrtrinal distribution of the func-
tion form taking both serialization elements (SL&Ll) into consideration:

SL=alpha*SLA+(1-alpha)*SLI (6)
Example 1 Example 2
alpha=0.4 alpha = 0.001
alpha =0.7 alpha = 0,0015
alpha = 0.%lphagym = 0.66 alpha = 0,0G#2phas,m = 0.0016
Values of serialization factors SLIin fuction of data number in
searching for the shortest path
W 120-140
@100-120
W 80-100
0 60-80
[40-60
"".' S% n - number of vertices | I 20-40
cnmbe oo 123456 75 m0-20
sandt

Fig. 8. Example 2 - relationship between serialirafactor and data parameters

Serialization of input and output data transferparallel structures 251

Fig. 9. Operations heading for equalization (middjares) of influences of SLA
and SLI elements (from formula (6))

The symmetrization (alpha = Figure 10) of the levels of SLA and SLI compo-
nents leads to the equalization of property infigenwhich the components repre-
sent. If the alpha level exceeds 0.5 then the émite of the first component, i.e.
SLA from the formula (6) was increased. The firstimponent characterizes
the algorithm capability to the accumulation ofiegrin separate nodes preceding
a direct use of data. If the alpha level is smatlem 0.5 then the influence of
the second component (SLI) was increased, i.e.ctmponent which reflects
the algorithm capability to collect and transfer di#fta from various processors
directly before the use of data. An increase inghsicipation of one of the com-
ponents to reach the balance (e.g. the increasdpira value) is a consequence
of the operation heading for a complement of stnadtlacks of serializable pro-
perties of concrete algorithm in a given range.

252 H. Piech, M. Sty

alpha>0.5 = SLA_was_too_small (participation of SLA was irased)
alpha=0 = SLA and_SLI have_equal_influences @)
alpha<0.5 = SLI_was_too_small (participation of SLI was ined)

equal leve

alphat =

equal leve

alphal =

Fig. 10. Symmetrization of serialization components

Conclusions

1.

In the existing multiprocessor hardware solwgiamd communication systems
operating them, serialization is a feature comnsjstn collecting data directly

before the realization of the process which usemtht is often associated with
the capability and procedure to create presenckubacontaining these data
[5]. In our interpretation, the serialization woulte an algorithm feature

relating to the data accumulation in processesedksas to the cumulative pro-
cedure of data transfer to the selected place ¢ssmr and process) directly
before their use.

. As the algorithm research shows, as a rulejntthéence of both SLA and SLI

components is essentially diverse (more than 4Q%¢sults from the fact that
a greater diffusion of subprocesses is the reasothé intensification of diffu-
sion procedures and data collection. Simultaneguslig conducive to a de-
crease in the degree of data accumulation procsdised.

. Serialization characterizes the susceptibilityao algorithm to parallelization

or diffusion of its realization. Processing envimnt parameters indicate
whether it is more effective - to diffuse or to agwlate data (i.e. whether

Serialization of input and output data transferparallel structures 253

the realization of concrete algorithm in a givengassing environment is effec-
tive).

4. Symmetrization of the serialization componeatpt{a level in Figure 9) allows
one to deterministically specify the participatiohthe accumulation of SLA
and the diffusion of SLI components in the givemgoasithm realization.
If the diffusion influence is greater than the aoclation influence then
alpha > 0.5, otherwise alpha < 0.5.

References

[1] Flynn M.J., Some computer organizations andrtbfectiveness, IEEE Trans. on Computers
1992, C21.

[2] Raghavan P., A statistical adversary for onkigorithms, Discrete Mathematics and Theoretical
Computer Science, Springer-Verlag 1991.

[3] Sait S.M., Youssef H., VLSI Design Automatiofheory and Practice, McGrow-Hill Book Co.,
Europe 1995.

[4] Georges-Schleuter M., Explicit parallelism afngtic algorithms through population structures,
Problem Solving from Nature, Springer-Verlag, Neark’'1991.

[5] Valduriez P., Parallel Processing and Data M@naent, Chapman & Hall 1992.

[6] Aarts E.H., Bont F.M., Habers E.H.,Van Laarhowd., Parallel implementation of the statistical
cooling algorithm, Integration, the VLSI Journa®8b.

