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Abstract. The paper is devoted to the problem of incorporating prior information into  
regression model estimation. We assume the prior information about regression parameter is 
derived from regression analysis applied to some phenomenon described by the same  
regression equation. However, usually the prior information is uncertain. On the base  
of computer simulation we construct a coefficient which allows incorporating the prior 
information along with its uncertainty. The coefficient is based upon the index number  
of the matrix of observations of the explanatory variables. Performance of estimators based 
upon the coefficient of uncertainty is examined through computer simulations. 

Introduction 

Consider the linear model  

Y = Xββββ + Z 

where Y is a vector of observations of the dependent variable, X is a nonstochastic 
(n x k)  matrix of the observations of explanatory variables, ββββ is a k-dimensional 
regression parameter and Z is an n-dimensional vector of random disturbances. 
Assume E(Y) = Xββββ, Cov(Y) = Σ. 

Assume now the prior information β β β β = bp is derived from regression analysis 
applied (perhaps by someone else) to some phenomenon described by the same 
regression equation. However, we cannot be sure that the two phenomena are  
described by exactly the same regression equation and we do not know how reliable 
the previous results are - the prior information is uncertain. So, we must decide 
whether to use the information. If yes, we must choose a proper estimator. The usual 
least-squares estimator bLS does not incorporate prior information and so to use this 
information we need some alternative. In this paper we propose such an alternative - on 
the base of computer simulation we also construct an index and a coefficient  
of uncertainty which allow us incorporating the prior information along with its 
uncertainty. The coefficient is based upon the condition number of the matrix of 
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observations of the explanatory variables. Performance of the estimators based 
upon the coefficient of uncertainty is examined through computer simulations. 
Another indexes and coefficients of uncertainty were proposed in [4]. 

1. Problem statement and notation 

In what follows the model used to obtain the prior information is called  
the previous model. The model to be estimated is called the current model. In 
various symbols lower indices p and c point out what model are the given quanti-
ties connected with.  

Now, let us consider the following class of linear estimators: 

 b(ϑ,∆,Σ)(Y) = C(∆,Σ)XTΣ−1Y + C(∆,Σ)∆-1ϑϑϑϑ  

where C(∆,Σ) = (XTΣ−1X+∆−1)−1. 
Estimators having such a structure arise as solutions to some problems of Bayes 

estimation. The value of ϑ may be thought of as a prior guess on b, while a matrix 
∆ reflects our uncertainty connected with the guess.  To make use of the estimators 
we must specify the parameters (ϑ,∆,Σ) and usually it is not clear how to do it. 
Most easy case is connected with the matrix Σ. The theory of so called empirical 
(or feasible) generalized least squares estimation provides us with methods  
of estimating the covariance matrix Σ. The computer simulations also show that 
the intuitive method of determining the parameter ϑϑϑϑ  as bp is quite satisfactory 
(here bp is the LS-estimate for ββββ in the previous model). 

However, the most confusing point is how to determine the matrix ∆ describing 
our uncertainty connected with the prior information b = bp. And that is the prob-
lem we consider here.  

Our second aim is to answer the question whether or not the estimator b(ϑ,∆,Σ) is, 
in a given situation, better than the usual LS - estimator. How can we know it? This 
question leads to the notion of an index of uncertainty. 

2. The index of uncertainty 

In our research we examine the case where the matrix ∆∆∆∆, which reflects our  
uncertainty connected with the information b = bp,  is defined as diagonal one with 

the elements ∆ii =
2
it  where  
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Here bpi is the i-th component of bp, Here bci is the i-th component of bc  
(the LS-estimate for ββββ in the current model) and Sci is the standard error of bci. We 
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denote this matrix by ∆∆∆∆*. The estimators b(ϑ,∆,Σ) with ϑϑϑϑ  = bp, ∆∆∆∆ = ∆∆∆∆* and Σ  
estimated as in the empirical generalized LS method will be denoted as b*.  It is 
obvious that sometimes the estimator is better than bLS, sometimes not. So it would 
be desirable to obtain a quantity which would show us whether or not the usage of 
the estimator b* is profitable or, in other words, whether the prior  information is 
useful or misleading. Such an indicator is called an index of uncertainty. More 
precisely, an index of uncertainty is an arbitrary quantity which has high negative 
correlation with the value of a loss reduction gained by the estimator b*.  

For  a given loss function L(.,.) an improvement gained by any given estimator b 
with respect to the estimator bLS can be measured by a symmetric relative loss  
reduction index given by  
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Now we are to choose quantities which would possibly reflect the uncertainty 
understood as described above. It is quite clear that the information is the more 
profitable the less trustful are our current estimates and, on the other hand, the 
more trustful are the previous ones. However, how trustful  the results are depends 
on the data at hand and thus as quantities which potentially reflects our uncertainty 
of prior information we consider the following well known characteristics of both 
the data and the model: multiple coefficients of determination for the current and 
previous model, respectively, CNc, CNp - condition numbers of the matrices  
of observations of explanatory variables for the current and previous model,  
dfc, dfp - degrees of freedom for the current and previous model, respectively. 

Let us remember, see e.g. Belsley [1], that the condition number CN of any  
(n×k) matrix X is given by  

 
min

max

λ
λ=CN  

with maxλ  and minλ being the maximal and minimal singular value of the matrix 

(XTX)−1. 
With the help of computer simulations we generate over 20 000 regression  

settings. The simulations are described in Grzybowski [2]. The main statistical 
characteristics of the obtained data are presented in Table 1. 

Given the data and employing the tool of least squares we have found several 
proposals for the uncertainty index. Among them the best  was an index IU* given 
by the following formula: 
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Table 1 
Location and dispersion characteristics of generated data 

CN c CN p k n c n p

Mean 0.77 0.75 1031 1050 8.9 80.7 81.3
Standard 
deviation

0.13 0.11 2311 2345 3.7 62 61

Min 0.25 0.25 1.27 1.2 3 6 6
Max 0.99 0.99 9993 9999 15 200 200

Lower 
quartile

0.68 0.68 7.11 2.7 6 20 24

Median 0.76 0.75 23.9 6.06 9 62 68
Upper 

quartile 0.87 0.81 191.9 32.6 12 136 135

2
cR 2
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The Pearson correlation coefficient r between LR(b*) calculated for  loss func-

tion given by 
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and the values of IU* equals −0.66. The value of r is similar for various data sets 
(representing various regression settings) generated independently and consisting 
of thousands of records. 

3. Coefficient of uncertainty  

For any given  estimator b  the  region in a k-dimensional parameter space in 
which the estimator b has smaller values of the risk function than the estimator bLS 
we call an improvement region (connected with  b).  

It is known that for any positively definite (k×k) matrix ∆∆∆∆ and any given  
number K > 0, the improvement region for the estimator b(ϑ,K∆,Σ) is an ellipsoid in 
the parameter space. The ellipsoid is the greater, the greater is K. On the other 
hand it is also well known that the value of risk reduction tends to 0 when K tends 
to infinity, see Grzybowski [3]. 

Let bK denote the estimator b(ϑ,∆,Σ) with the parameters defined as follows: ϑϑϑϑ  = 
= bp, ∆∆∆∆ = K∆∆∆∆* and ΣΣΣΣ is estimated as in the empirical generalized LS method. We 
see that b1 = b*. It follows from the above remarks that a proper choice of the con-
stant K is a crucial point when applying the estimators bK. 

To study how the uncertainty incorporated into the estimate depends on  
the value of IU* we compare performance of the estimators bK for various values 
of K  (the bigger K the larger amount of uncertainty is incorporated). Table 2, pro-
viding us with the results of the comparison, is based on next 25 500 records. 
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The results presented in Table 2 suggest that the uncertainty incorporated into 
regression should be described by a matrix  

 ∆ = CU(IU*) ∆* 

where CU is some positive and increasing function of its argument - the function 
will be called Coefficient of Uncertainty. The estimator b(ϑ,∆,Σ) with the above 
given matrix ∆  we denote as bCU.  

 
Table 2 

Average LR gained by the estimators bK for deferent value classes of IU* 

 
 
To construct a satisfactory proposal for coefficient CU we perform another 

simulations. We record the relative improvement gained by the estimators bK for 
50 different values of the constant K. So, for each record we have the value of IU* 
and - approximately - the best value of the constant K. We obtained data consisting 
of 27 000 records. On the base of analysis of the data we propose the following 
formula for the coefficient CU. 
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In Table 3 we compare the performance of the estimator bCU and the estimators 
bK, for different values of K. As we can see the performance of the estimator bCU is 
quite satisfactory - it works better than any given estimator bK. 
 

K= 1000 K= 100 K =10 K= 1 K =0,1 K= 0,01 K= 0,001 IU
44,9% 49,0% 52,8% 56,0% 59,1% 61,1% 62,0% 0,787   
42,5% 45,6% 49,0% 52,4% 55,3% 57,1% 57,8% 0,839   
41,5% 44,6% 46,8% 49,0% 51,1% 52,1% 52,3% 0,881   
32,4% 34,6% 36,5% 37,8% 39,4% 40,1% 40,2% 0,921   
23,1% 25,2% 27,0% 28,4% 29,8% 31,1% 31,6% 0,955   
20,2% 21,4% 23,3% 24,5% 25,4% 25,8% 25,9% 0,977   
12,1% 13,7% 14,9% 16,2% 17,3% 18,1% 17,8% 0,992   
11,5% 12,5% 13,6% 14,3% 14,8% 14,8% 14,5% 1,004   
8,6% 9,8% 10,4% 10,9% 10,9% 10,6% 10,4% 1,019   
4,1% 5,4% 5,4% 5,4% 5,1% 4,6% 4,1% 1,038   
-3,1% -3,4% -3,5% -3,8% -4,3% -5,1% -6,0% 1,064   
-10,7% -11,9% -12,9% -13,3% -14,4% -15,7% -17,1% 1,093   
-15,7% -16,8% -18,6% -19,9% -21,3% -22,7% -24,8% 1,120   
-19,7% -21,1% -22,5% -25,1% -27,0% -29,7% -32,2% 1,158   
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Table 3 
Average LR gained by the estimators bCU and bK for deferent value classes of IU* - comparison 

 

Concluding remarks 

We should stress that we did not prove that the  proposed index IU* and coeffi-
cient CU are best possible. Moreover, we do not think that there exists "the best" 
choice of IU and CU. However, based on computer simulations we find that our 
proposal for IU  is a very good indicator of the uncertainty of the prior information  
and the incorporation of prior information via proposed  CU leads to significant 
risk reduction and so the proposals seem to be very satisfactory.  

We should also stress, that our results  were obtained in the case where the loss 
function is given by the formula (1).  For any different loss function the appro-
priate indexes IU and coefficients CU may be given by different formulae. 
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CU K= 1000 K= 100 K= 1 K =0,1 K= 0,01 K= 0,001 IU
48,3% 35,6% 43,3% 46,1% 47,5% 48,1% 48,3% 0,786
43,1% 32,4% 38,1% 40,7% 42,5% 43,4% 43,2% 0,839
34,5% 28,4% 32,6% 33,9% 34,9% 35,0% 34,5% 0,881
23,9% 21,2% 23,4% 24,2% 24,2% 24,1% 23,9% 0,921
15,6% 12,8% 14,3% 15,0% 15,4% 15,5% 15,1% 0,955
6,8% 5,8% 6,5% 6,8% 6,8% 6,2% 5,5% 0,978
1,5% 2,9% 2,9% 2,1% 1,4% 0,6% -0,4% 0,994
-1,8% 0,5% -0,1% -1,3% -2,0% -2,7% -3,9% 1,008


