Scientific Research of the Institute of Mathematics and Computer Science

GROUPS OF TRANSFORMATIONS AS PSEUDOGROUPS OF FUNCTIONS

Jolanta Lipińska

Institute of Mathematics and Computer Science, Czestochowa University of Technology, Poland

Abstract. In [1] it was shown how to obtain pseudogroups of functions from quasialgebraic spaces which were introduced by W. Waliszewski. In [2] it was shown how to obtain pseudogroups from premanifolds. In this paper we show how to obtain pseudogroups from groups.

In [1] we used the following definition of a pseudogroup.

 $0 f \in \Gamma$

A non-empty set Γ of functions for which domains are non-empty, will be called a pseudogroup if it satisfies the following conditions:

$$1^{\circ} \underset{f,g \in \Gamma}{\wedge} f(D_{f}) \cap D_{g} \neq \emptyset \Longrightarrow g$$
$$2^{\circ} \underset{f \in \Gamma}{\wedge} f^{-1} \in \Gamma \ 1$$
$$3^{\circ} \underset{\Gamma \in \langle \Gamma \rangle}{\wedge} (\mathbf{Y} \Gamma \in \Gamma)$$

where

$$\langle \Gamma \rangle = \{ \Gamma'; \emptyset \neq \Gamma' \subset \Gamma \text{ and } \mathbf{Y} \Gamma' \text{ is a function and } \mathbf{Y} (\Gamma')^{-1} \text{ is a function} \}$$

and

$$(\Gamma')^{-1} = \left\{ f^{-1}; f \in \Gamma' \right\}$$

and f^{-1} denotes an inverse relation.

It was shown in [1] that if Γ is a pseudogroup of functions, then $(\Gamma, \{D_f; f \in \Gamma\} \cup \{\emptyset\})$ is a topological space and Γ is an *Ehresmann* pseudogroup of transformations on this topological space. On the other hand, if Γ is an *Ehresmann* pseudogroup of transformations on a topological space S, then Γ is a pseudogroup of functions.

Let us consider the group G of transformations the set S onto S. We can consider every transformation which belongs to G as a function. So we can ask a

question if the set G is a psedogroup of functions. The conditons 1° and 2° are satisfied in obviously way because G is a group. We will show that 3° is also satisfied.

The only sets G'' which satisfy the conditon $\emptyset \neq G' \subset G$ and such that YG' is a function are sets consisted of one element. In these cases YG' = f

where $f \in G'$. We obtain that $YG' \in G$. So we have the following theorem:

Theorem. If G is a group of transformations G is a pseudogroup of functions.

If elements of G are transformations the set S onto S it will be antidiscret topolgy on S.

References

- [1] Lipińska J., Diffeomorphisms of quasi-algebraic spaces, Demonstratio Math. 1986, 19, 139-151.
- [2] Lipińska J., Pseudogroups in premanifolds, Scientific Research of the Institute of Mathematics and Computer Science 2002, 1(1), 93-95.