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Abstract. The considerations are concerned with mathematical modeling of nonstationary 
thermomechanical processes in functionally graded laminates (FGL). The proposed  
modeling procedure is an extension of that based on the tolerance averaging technique [13]. 

Introduction 

We summarize below some of studies which have been lately realized and  
published by a group of researches in Faculty of Mechanical Engineering and 
Computer Science, Czestochowa University of Technology. The object of analysis 
is the heat conduction and elastodynamics of two-phase multilayered solids having 
macroscopic properties continuously varying in the direction normal to the layering. 
The above solids will be referred to as the functionally graded laminates (FGL). 
They constitute a special case of structures made of functionally graded materials 
(FGM), cf. [9] and the list of references therein. The main aim of the studies is to 
answer how to describe thermomechanical processes occurring in FGL by means 
of PDEs with smooth functional coefficients. Two main lines of modeling were  
proposed. The first one is based on a certain generalization of the approach to  
the modeling of periodic structures using the periodic simplicial division and  
leading to the system of finite difference equations [7, 8]. The second line of  
modeling takes into account some concepts and assumptions of the tolerance  
averaging technique [13]. This technique was applied in the modeling of 
elastodynamics of functionally graded laminated plates [1], functionally graded 
laminated shells [14], functionally graded laminates with interlaminar microcracks 
[5, 15]. This procedure makes it possible to analyze also boundary layer 
phenomena in elastodynamics of functionally graded laminates [6]. Moreover, 
introducing the concept of slowly graded laminates with a weak transversal 
inhomogeneity we can decompose tolerance averaging equations into two 
asymptotic approximations. This approach was applied independently to 
elastodynamics [10-12] and heat  
conduction problems [2, 3]. 
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In this contribution the considerations will be focused on the boundary layer 
phenomena in elastodynamics of functionally graded laminates and asymptotic 
approximations in elastodynamics and heat conduction of slowly graded laminates 
with a weak transversal inhomogeneity. 

Denotations. By 1 2 30x x x  we denote Carthesian orthogonal coordinate system in 

the physical space. Let ( )0, ,LΠ ×  2R ,Π ⊂  be the region in this space occupied 

by the laminated solid in the reference configuration in which the x3 - axis is  
normal to the lamina interfaces. We denote ( )0,0,1 ,≡e  ( )1 2, ,x x≡x  and t stands 

for the time coordinate. The partial differentiation with respect to arguments xk, 
k = 1, 2, 3, is denoted by  k∂  and time differentiation by the overdot. We introduce 

gradient operators ( )1 2 3, ,∇ = ∂ ∂ ∂  and ( )1 2, ,0 .∇ = ∂ ∂  Throughout Sec. 2 the  

tensor notation is used with “dot” and “double dot” as the scalar and the double 
scalar products, respectively. In Sec. 3 we apply the index notation where 
subscripts , 1,2.α β =  Vectors and vector fields are denoted by small bold face 

letters, second-order tensors and tensor fields by capital bold face letters and 
higher-order tensors and tensor fields by block letters. 

For an arbitrary integrable function f (f can also depend on x and time t) defined 
in ( )0,L  the averaging of this function is denoted by 

 ( ) ( )
3

3

/ 2

3
/ 2

1
x l

x l

f x f y dy
l

+

−

= ∫  

To make this paper self consistent we recall in the subsequent section some of the 
basic concepts which were presented in [6]. 

1. Preliminaries 

The object of considerations is a two component functionally graded laminate 
consists of large number of thin layers. The thickness of every layer is assumed to 
be the same and will be denoted by l. Let us assume that FGL is divided on m 
layers along its thickness L such that L = ml, m is a natural number and m−1 << 1. 
Thicknesses of lamina in the n-th layer, n = 1,...,m, are denoted by ,nl′  .nl′′  A cross 

section of FGL solid and its layer are shown in Figure 1, where, ,f f′ ′′ stand for 

physical characteristics of lamina materials (mass densities, tensors of elastic 
moduli or/and specific heats per unit area and a symmetric heat conduction  
tensors) in every pair of adjacent laminae, respectively. By ( ) ( ),ν ν′ ′′⋅ ⋅  we denote 

smooth function defined on [ ]0, L  representing distributions of mean volume 
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fractions of lamina materials, ( ) ( )3 3 1,x xν ν′ ′′+ =  [ ]3 0, .x L∈  Setting ν ν ν′ ′′=  

we refer ( )ν ⋅  to as the phase distribution function. 

f ′′  

f ′  

l  
nl′  

nl ′′  

l 
l 
l 

3x

l 

L 

2x  1x

l 

 
Fig. 1. A cross-section of the FGL solid and a fragment of its n-th layer 
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Fig. 2. A diagram of the fluctuation shape function in the n-th layer 
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Now, we recall two important notions occurring in tolerance averaging  

modelling technique. Function [ ]( )1 0,F C L∈  of argument  (F can also depend on 

x and t as parameters) will be called slowly varying (related to length l, l << L, and 
a tolerance ε, 0 < ε << 1) if functions 3l F∂  and ( )O Fε  are of the same order for 

0.ε →  If this condition holds also for all derivatives of F then we shall write 

( ) ,F SV lε∈  where ε  is called a tolerance parameter. For a detailed discussion  

of this concept the reader is referred to [13]. 
Let [ ]: 0, Rg L →  be a continuous function the diagram of which in an 

arbitrary interval ( )1 , ,n l nl −   n = 1,...,m, is shown in Figure 2. This function 

will be referred to as the fluctuation shape function and represents a certain 
generalization of the saw-like function, well known in modelling of periodic 
laminates [13]. 

The basic assumption of the modelling procedure states that in every FGL mean 
volume fractions are slowly varying, i.e. they satisfy conditions ( ) ( ) ,SV lεν ′ ⋅ ∈  

( ) ( ).SV lεν ′′ ⋅ ∈  This procedure will be also based on the formal assumption that 

for every slowly varying function ( )F SV lε∈  terms ( )O Fε  can be neglected as 

small when compared to F. This assumption will be referred to as the tolerance 
approximation. 

2. Elastodynamics 

2.1. Tolerance averaging model equations 

We are to present the tolerance averaging approach to the modeling of 
elastodynamic problems of a linear-elastic functionally graded laminated the 
scheme of which was illustrated in Figure 1. By ,ρ ρ′ ′′  and ,′ ′′Ł Ł  we denote 

mass densities and tensors of elastic moduli in every pair of adjacent laminae, 
respectively.  
The subsequent considerations will be restricted to problems in which 
displacements across the thickness of every lamina can be approximated (with a 
certain tolerance ε) by linear functions. Let us denote by ( )3, , ,x tw x  

( )1 2, ,x x= ∈Πx  [ ]3 0,x L∈  the displacement field at time t. Recalling the concept 

of the fluctuation shape function and that of the slowly-varying function, we 
conclude that the aforementioned restriction can be assumed in the form of the 
decomposition 

 ( ) ( ) ( ) ( )3 3 3, , , , , ,x t x t g z x t= +w x u x v x  (1) 
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where u, v are slowly varying functions of argument x3: 

 ( ) ( ) ( ) ( ), , , , ,t SV l t SV lε ε⋅ ∈ ⋅ ∈u x v x  (2) 

Using the tolerance approximation we also obtain 

 ( ) ( )3 3, , , ,x t x t=u x w x  

for every ( ) [ ]3, 2, 2x l L l∈Π × −x  and every time t. 

Governing equations for basic kinematic unknowns averaged displacement u 
and fluctuation amplitude v will be derived from the principle of stationary action. 
To this end the integrand in the action functional will be assumed in the form 

 
1 1

: :
2 2

ρ= ⋅ − ∇ ∇& &w w w wCL  

where the displacement field w is restricted by conditions (1), (2). Using the  
tolerance approximation and recalling that ( )0,0,1=e  we shall approximate ∇ w  

by ( ) ( )3 3 .g x g x′∇ + ⊗ + ∇u e v v  Similarly we conclude that: 

 
( ) ( )
( ) ( )

3 3

3 3

x x

x x

ρ ν ρ ν ρ

ν ν

′ ′ ′′ ′′= +

′ ′ ′′ ′′= +C C C
 (3) 

We shall also introduce denotations: 

 

[ ] ( ) ( )
[ ] ( ) ( )
{ } ( ) ( )( )

3

3

3 3

2 3

2 3

12

T

x

x

x x

ν

ν

ν ν

′ ′′≡ − ⋅

′ ′′≡ ⋅ −

′ ′′ ′′ ′≡ ⋅ + ⋅

e

e

C e e

C C C

C C C

C C

 (4) 

After rather lengthy manipulations the Euler-Lagrange equations for L  lead to 
the following equations of motion: 

 ( )2 2 2 2 :l l

ρ

ν ρ ν

− ∇ ⋅ =

− ∇ ⋅ ∇ + =

&&

&&

u S 0

v v h 0C
 (5) 

and constitutive equations: 

 
[ ]

{ } [ ]
:

:
T

= ∇ + ⋅

= ⋅ + ∇

S u v

h C v u

C C

C
 (6) 
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Equations (5), (6) for the basic kinematic unknowns u and v, with coefficients 
defined by (3) and (4), together with formulae (1), (2) represent an averaged 
mathematical model of the FGL solid under consideration. 

2.2. Boundary layer equation 

Let us decompose the fluctuation amplitude v in equations (5), (6) into the sum 

 { } [ ]1
:

T−= − ⋅ ∇ +v C u rC  (7) 

where r is a new kinematical unknown slowly varying in x3. Neglecting in 
equations (5) terms depending on the microstructure length l we obtain .≡r 0  That 
is why r is referred to as the intrinsic fluctuation amplitude. At the same time from 
(1) and (7) we obtain 

 ( ) ( ) ( ){ } [ ] ( ) ( ) ( )1
3 3 3 3 3 3, , , , : , , , ,

T
x t x t g x x t g x x t

−= − ⋅ ∇ +Łw x u x C u x r x  (8) 

where gr  represents the intrinsic fluctuation of displacement. 

In order to formulate governing equations for functions u and r we shall use  
the notion of homogenized tensor of elastic moduli 

 [ ] { } [ ]1 Th −≡ − ⋅ ⋅Ł Ł Ł ŁC  

We also introduce the following differential operators: 

 

( )
( ) { }

{ } [ ] { } [ ]( )( )
2 2

1 12 2

: ,

: ,

: : :

h

T T

A

D l

F l

ρ

ν ρ

ν ρ − −

≡ − ∇ ⋅ ∇

 ≡ − ∇ ⋅ ∇ + ⋅
 

 ≡ ⋅ ∇ − ∇ ⋅ ∇ ⋅ ⋅ ∇
  

&& Ł

&& Ł

&&Ł Ł Ł

u u u

r r r C r
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Combining equations (5) with formula (7) we obtain the coupled system of  
the model equations for u and r: 

 
[ ] :A

D F

= ∇

=

Łu r

r u
 (9) 

which is an alternative to model equations (5). It can be shown, [6], that equation 

 D =r 0  (10) 
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describe certain near-initial and near-boundary phenomena strictly related to the 
initial and boundary conditions (on the part of boundary intersecting interfaces 
between laminae) imposed on r. That is why equation (10) will be referred to as 
the boundary-layer equation where the term “boundary” is related both to time and 
space. 

2.3. Asymptotic approximations 

Now we are to show that under certain conditions, the coupled macro-micro 
equations (9) can be decomposed into approximate model equations describing 
independently the macro- and micro-response of the laminated solid. 

Let us denote by 
n

⋅ an arbitrary but fixed norm in the linear space of all n-th 

order tensors related to space E3. Let us also define 

 
[ ]

[ ]
3

3

0,
4

sup
x L

η
∈

=
Ł

Ł
 

as a transversal inhomogeneity parameter of the laminates under consideration. 
These laminates are said to have a weak transversal inhomogeneity provided that η 
satisfies condition 0 < η << 1. This kind of inhomogeneity takes place for laminae 
reinforced by long high-strength fibres. In this case, the components of the elastic 
moduli tensor Ł  which are related to the 1 2Ox x  - plane are strongly different in 
adjacent laminae; the remaining components attain only small jumps across the 
lamina interfaces. The above condition holds true for many laminated materials 
used in civil and mechanical engineering. 

The subsequent analysis will be restricted to laminated solids with a weak 
transversal inhomogeneity, where η is treated as a certain small parameter. 

Notice that the values of [ ] :
T ∇Ł r  and Fu  are of an order ( ) ,O ηr  ( ) ,O ηu  

respectively. Moreover, Au and Dr  are of the same order as u and r, respectively. 
Let us assume that the solutions to Eqs. (9) can be represented in the form 

 0 0,∆ ∆= + = +u u u r r r  (11) 

where: ( )0
0 ,O η∈u  ( )0

0 ,O η∈r  ( ) ,O η∆ ∈u  ( ).O η∆ ∈r  Bearing in mind (11) 

and applying the limit passage 0η →  to Eqs. (9), we obtain the following system 

of equations for 0 0,u r : 

 
0

0

A

D

=

=

u 0

r 0
 (12) 
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We shall assume that 0 0,u r  satisfy the boundary/initial conditions which 

coincide with those imposed on u and r, respectively. From (9), (11), (12) we 
conclude that ,∆ ∆u r  have to satisfy the equations: 

 
[ ] ( )

( )
0

0

:
T

A

D F

∆ ∆

∆ ∆

= ∇ +

= +

Łu r r

r u u
 (13) 

as well as the corresponding homogeneous boundary/initial conditions. It has to be 
emphasized that Eq. (12)1 represents the model obtained by the homogenization 
technique. Equation (12)2 describes the phenomena related to the fluctuations of 
boundary and initial displacements. Equations (12) will be referred to as the first 
order approximation model for slowly graded laminates with a weak transversal 
inhomogeneity. In the framework of this model the basic kinematic unknowns u, r 
are approximated by 0 0, ,u r  respectively. In this case formula (11) yields 

 ( )0 ,O η= +u u   ( )0 O η= +r r  

i.e. we deal with an asymptotic approximation of an order ( ).O η  

Now we assume that ,∆ ∆u r  can be written in the form 

 ( )1 ,o η∆ = +u u    ( )1 o η∆ = +r r  

where 1,u  1r  are assumed to be linear functions of η. Applying limit passage 

0η →  to equations (13) we obtain the following system of equations for 1u , 1r : 

 
[ ]1 0

1 0

:
T

A

D F

= ∇

=

Łu r

r u
 (14) 

The above equations are assumed to hold together with homogeneous boundary 
and initial conditions. These conditions are assumed to have the same form as  
pertinent homogeneous conditions for ,∆u  ,∆r  respectively. Equations (11)  
together with (13) will be referred to as the second order approximation model. In 
this case we deal with an asymptotic approximation of order ( )o η  given by 

 ( )0 1 ,o η= + +u u u    ( )0 1 o η= + +r r r  

It can be seen that the right-hand sides of Eqs. (14) are known provided that  
the boundary/initial value problem for Eqs. (12) has been previously solved.  
Summarizing the obtained results we state that model equations (9) for u and r can 
be decomposed to the simplified asymptotic form given by equations (12) and 
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(14). It can be seen that the presented modelling line leads to the formulation of 
higher-order approximation models. 

3. Heat conduction 

3.1. Tolerance averaging equations 

We are to show that the concept of modeling of functionally graded laminates 
with a weak transversal inhomogeneity can be applied also to the analysis of heat 
conduction problem. We will consider a functionally graded laminated rigid heat 
conductor the material geometry of which was described in Sec. 1, cf. Figure 1. 
By ,c′  c′′  and ,ijK ′  ijK ′′  we denote a specific heat (per unit area) and a symmetric 

heat conduction tensor in laminae in the n layer with thicknesses ,nl ′  ,nl ′′  

respectively. Every lamina is assumed to be homogeneous with 3x = const as the 

material symmetry plane. Hence ,ijK ′  ijK ′′  are constant and 3 3 0,K Kα α′ ′= =  

3 3 0, 1,2.K Kα α α′′ ′′= = =  

Let ( )3, , ,x tθ θ= x  ( )1 2, ,x x= ∈Πx  [ ]3 0, ,x L∈  stand for a temperature field 

at time 0.t ≥  Function ( )θ ⋅  is assumed to be continuous and satisfy in every 

lamina the Fourier heat conduction equation 

 ( ) ( ) ( ) ( )3 3 3 3, , , , 0i ij jc x x t K x x tθ θ − ∂ ∂ = 
& x x  (15) 

together with the heat flux continuity conditions on the interfaces between 
adjacent laminae.  

The line of modeling will be similar to that presented in Sec. 2 for the 
elastodynamic problems. We are to consider the class of temperature fields θ  in 
the form 

 ( ) ( ) ( ) ( )3 3 3 3, , , , , ,x t x t g x x tθ ϑ ψ= +x x x  (16) 

where functions ϑ  and ψ  are slowly varying in argument [ ]3 0, .x L∈  They 

constitute the basic unknowns of the modeling and will be called the averaged 
temperature and the temperature fluctuation amplitude, respectively. 

It can be shown [13], that the governing equations for ,ϑ  ψ  have the form: 

 
[ ]

{ } [ ]
33 3 3 33 3

2 2 2 2
33 33 3

0

0a

c K K K

l l K K K

αβ α β

αβ β

ϑ ϑ ϑ ψ

ν ψ ν ψ ψ ϑ

− ∂ ∂ − ∂ ∂ − ∂ =

− ∂ ∂ + + ∂ =

&

&
 (17) 
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where: 

 
( ) ( )

( ) ( )
3 3

3 3

c x c x c

K x K x Kαβ αβ αβ

ν ν

ν ν

′ ′ ′′ ′′= +

′ ′ ′′ ′′= +
 

 
[ ] ( ) ( )
{ } ( ) ( )( )

33 3 33 33

33 33 3 33 3

2 3

12

K x K K

K K x K x

ν

ν ν

′ ′′≡ −

′ ′′ ′′ ′≡ +
 

 
Equations (17) represent a tolerance model of the heat conduction in a 

functionally graded laminate under considerations. They constitute a basis for the 
subsequent analysis. 

3.2. Asymptotic approximations 

The main problem we are going to solve is how to separate model equations 
(17) for the averaged temperature and temperature fluctuations. The subsequent 
analysis will be based on the concept of the weak transversal inhomogeneity. To 
explain this concept let us reformulate the tolerance model equations. We shall 

introduce an alternative form of coefficients used before ( )33 33 / 2k K K′ ′′= +  and 

( )33 33 / 2.K Kη ′′ ′= −  Under assumption33 33K K′ ′′≅  what is taking place for laminates 

with a weak transversal inhomogeneity equations (17) can be written in the  
following form: 

 
3 3 3

2 2
3

4 3

12 4 3

c K k

l c l K k

αβ α β

αβ α β

ϑ ϑ ϑ ην ψ

ψ ψ ψ ν ϑ

− ∂ ∂ − ∂ ∂ = ∂

− ∂ ∂ + = − ∂

&

&
 (18) 

It has to be emphasized that the parameter η  for a weak transversal 

inhomogeneity satisfies condition 0 1η< =  and occurs only on the right-hand 

sides of equations (18). Thus, the mutual impact of the averaged temperature ϑ  
and the temperature fluctuations ψ  depends directly on the value of parameter η. 

Due to the presence of the small parameter η  in the resulting tolerance model 

equations (18), we shall apply the asymptotic approach to the analysis of  
initial/boundary problems. We shall seek an asymptotic approximation of solution 

to equations (18) in the form of expansions ( )2
0 1 ,Oϑ ϑ ηϑ η= + +  

( )2
0 1 .Oψ ψ ηψ η= + +  Substituting these expansions into tolerance model 

equations (17) and neglecting terms depending on the small parameter η  we 

obtain: 
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0 0 3 3 0

2 2
0 0 0

0

12 0

c K k

l c l K k

αβ α β

αβ α β

ϑ ϑ ϑ

ψ ψ ψ

− ∂ ∂ − ∂ ∂ =

− ∂ ∂ + =

&

&
 (19) 

The above equations are assumed to be considered together with the initial/ 
boundary conditions coinciding with those imposed on ϑ  and  .ψ  Equations (19) 

represent what will be called the first order asymptotic approximation of the tole-
rance model equations (18). The first approximation of solution to the equations 
(18) is 0ϑ ϑ=  and 0 .ψ ψ=  Similarly, substituting the proposed asymptotic 

expansions into tolerance model equations (18) and neglecting terms depending on  

the parameter 2η  we obtain: 

 
1 1 3 3 1 3 0

2 2
1 1 1 3 0

4 3

12 4 3

c K k

l c l K k

αβ α β

αβ α β

ϑ ϑ ϑ ην ψ

ψ ψ ψ ν ϑ

− ∂ ∂ − ∂ ∂ = ∂

− ∂ ∂ + = − ∂

&

&
 (20) 

Thus, the second order approximation is determined by formula 0 1ϑ ϑ ϑ= +  and 

0 1,ψ ψ ψ= +  where 0 1 0 1, , ,ϑ ϑ ψ ψ  are found as solutions to equations (19), (20) 

for the certain initial/boundary problem. 

4. Final remarks 

The main aim of the present contribution was to expose some basic ideas  
related to elastodynamics and heat conduction in functionally graded laminates 
(FGL). The general conclusion is that the tolerance averaging technique, so far 
applied to periodic structures also constitutes a proper tool of modeling for mate-
rials with deterministic but space varying structure. The results obtained above has 
been partly published and hence the contribution can be treated as general  
summary of results rather than a detailed discussion of the problem. It should be 
mentioned that the tolerance averaging technique can be also applied to more  
general form of solids with deterministic and slowly varying microstructure.  
The aforementioned problems are in the course of the present researches. 
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