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Abstract. In the paper the inverse problem consisting in the identification of boundary heat 

flux is presented. On the basis of the knowledge of heating curves at the selected points from 

the domain the time dependent value of boundary heat flux is identified. In order to solve the 

problem the global function specification method has been used, on the stage of numerical 

computations the boundary element method has been applied. In the case of disturbed input 

data the regularization procedures have been introduced. The theoretical considerations are 

supplemented by the examples of computations. 

1. Direct and inverse problem 

The following boundary initial problem (1D thermal diffusion) is considered 
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where a = λ/c is the thermal diffusion coefficient (λ - thermal conductivity,  

c - volumetric specific heat), T is the temperature, x - geometrical co-ordinate,  

t - time. For x = 0 the no-flux condition is assumed, while for x = L the time-

dependent heat flux is known. For t = 0 the initial condition T0 (x) is given. 

In the direct problem described above, the parameters λ, c, L as well as the  

initial and boundary conditions are known. The objective of the direct problem is 

to determine the transient temperature field T(x,t) in the body. 

For the inverse problem considered here, for x = L the time-dependent  

boundary heat flux q(t) is regarded as unknown, while the other quantities  

appearing in the formulation of the direct problem (1) are assumed to be known. 
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In order to solve the inverse problem discussed the knowledge of additional  

information is necessary [1, 2]. In particular we assume that the cooling (heating) 

curves at the selected set of points (sensors) xi are known: 

 ( ), ,   1,  2,  ...,  ,     1,  2,  ...,  
f f

d i d iT T x t i M f F= = =  (2) 

where M is a number of sensors. The temperature measurements (2) may contain 

the random errors. Such errors are assumed here to be normally distributed with  

a zero mean and a known constant standard deviation σ. 

2. Global function specification method 

Owning to the discrete nature of temperature data (2) the unknown function q(t) 

must also be expressed in a discrete form [3, 4], for example (Fig. 1) 
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Fig. 1. Approximation of unknown boundary heat flux 

In global function specification method the unknown values q
 1

, q
 2

,..., q
 F

 are iden-

tified simultaneously [3, 4]. In this case the following least squares criterion is 

considered 
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where Ti
 f
, Tdi

 f
 are the estimated and measured temperatures, respectively, for time 

t
 f
, f = 1, 2,..., F and for the sensor xi, i = 1, 2,..., M. 
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At first, the direct problem (1) is solved under the assumption that ˆ
f f

q q= , 

 f = 1, 2,..., F, where ˆ
fq  are the arbitrary assumed values of the heat flux.  

The solution obtained, this means the temperature distribution at the points xi for 

times t
 f
, f = 1, 2,..., F we denote by ˆ fiT . 

Function Ti
 f
 is expanded in a Taylor series 

 ( )
1 ˆ

ˆ ˆ

k k

ff
f f k ki

i i k
k q q

T
T T q q

q
=

=

∂
= + −

∂
∑  (5) 

Putting (5) into (4) one has 
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Using the necessary condition of function of several variables minimum one  

obtains 
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where  p = 1,2,..., F. 

Because for : / 0
f p

if p T q< ∂ ∂ = , so the system of equations (7) can be written 

in the form 

 ( ), ,

1 1

ˆ ˆ 0 , 1, 2, ...,
fF M

f f k k k f f p

i i d i i

f p i k

T Z q q T Z p F
= = =

 
+ − − = = 

 
∑ ∑ ∑  (8) 

where 

 
, ,

,

f f
f k f pi i
i ik p

T T
Z Z

q q

∂ ∂
= =
∂ ∂

 (9) 

are the sensitivity coefficients. After the mathematical manipulations one obtains 
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This system of equations allows to determine the values q
 1
, q

 2
,..., q

 F
. 
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We introduce the matrix of M·F rows and F columns 
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and then the system of equations (10) can be written as follows 
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In order to determine the sensitivity coefficients, at first the governing equations 

(1) are differentiated with respect to the unknown boundary heat flux q and then: 
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where 
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Because the matrices (12) are equal 
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so the elements of the these matrices can be calculated using the formulas 
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The basic problem (1) and additional one (17) have been solved using 1st 

scheme of the boundary element method [5, 6]. 

3. Regularization procedures 

In order to avoid the fluctuations of inverse problem solution, the regularization 

procedure can be taken into account [3, 4, 7, 8]. In this case the least squares crite-

rion (4) is supplemented by additional components, namely 
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where γ is the regularization parameter. The coefficients α0, α1, α2 are connected 

with adequate order of regularization. If α0 = 1, α1 = 0 and α2 = 0 then zeroth order 

regularization is considered, if α0 = 0 or α0 = 1 and α1 = 1, α2 = 0 then first order 

regularization is introduced, while for the second order of regularization: α0 = 0 or 

α0 = 1, α1 = 0 or α1 = 1 and α2 = 1. 

In the case of zeroth order regularization one obtains the following system of 

equations (c.f. equation (13)) 
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where I is the identity matrix. 

For first order regularization one has 
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For second order regularization the system of equations takes a form 
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where 
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4. Results of computations 

The basis of algorithms verification of boundary heat flux identification is the 

solution of direct problem (1) under the assumption that q(t) = 2000 + 240t − 6t
2
. It 

is assumed that L = 0.02 m, λ = 1 W/mK, c = 10
6
 J/m

3
K and T0 = 100

o
C. The do-

main has been divided into 20 linear internal cells, time step: ∆t = 1s. 

In Figure 2 the cooling curves at the points x1 = 0.017 m, x2 = 0.018 m and 

x3 = 0.019 m both in the case of exact solution as well as disturbed in the random 

way solution (σ = 0.5) are shown. In Figures 3 and 4 the results of inverse problem 

solution obtained using the global function specification method are shown. 

 

 

Fig. 2. Cooling curves (exact and disturbed) at the point x1, x2, x3 
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For undisturbed cooling curves the exact values q
1
, q

2
,..., q

30
 have been 

obtained. For disturbed data the big oscillations of solution have been observed 

(Fig. 3). 

 

 

Fig. 3. Real and identified heat flux  (without the regularization) 

 

Fig. 4. Real and identified heat flux - regularization of zeroth order (γ = 2 · 10 –7) 
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In Figure 4 the results obtained for zeroth order regularization (γ = 2 · 10
–7

) have 

been shown. In the case of regularization procedure application, the best results 

have been achieved for second order regularization (α0 = 0, α1 = α2 = 1) 

- Figure 5. 

 

     

Fig. 5. Real and identified heat flux - regularization of second order  

(γ = 2 · 10 –7, α0 = 0, α1 = α2 = 1) 

Summing up, for undisturbed data the global function specification method 

leads to the exact identification of boundary heat flux. In the case of disturbed data 

the regilarization procedure should be introduced, the proper choice of regulariza-

tion coefficient γ and coefficients α0, α1, α2 is not simple [3, 9]. 
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