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Abstract. The standard boundary element method for Poisson equation requires the discre- 

tization of boundary and interior of the domain considered. In this paper the variant called 

dual reciprocity boundary element method is presented. On the stage of numerical computa-

tions this approach allows to avoid the discretization of the interior of domain. In the final 

part of the paper the example of computations and comparison of results obtained using the 

BEM and DRBEM are shown. 

1. Governing equations  

We consider the Poisson equation 

 ( ) ( ) ( )2
, : , , 0x y T x y Q x yλ∈ Ω ∇ + =   (1) 

where [ ]W/mKλ  is the thermal conductivity, T is the temperature, ,x y  are the 

geometrical co-ordinates, ( ),Q x y  is the source function. The equation (1) is sup-

plemented by the boundary conditions: 
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where 
b
T  is known boundary temperature, n  is the normal outward vector at the 

boundary point ( ),x y , 
b
q  is given boundary heat flux. 

2. Boundary element method 

The boundary integral equation for equation (1) is following [1, 2]: 
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where ( ),B ξ η  is the coefficient connected with the local shape of the boundary, 

( )*
, , ,T x yξ η  is the fundamental solution, ( ),ξ η  is the observation point, while 

 ( ) ( )* *
, , , , , ,q x y T x yξ η λ ξ η= − ⋅∇n  (4) 

and 

 ( ) ( ), ,q x y T x yλ= − ⋅∇n  (5) 

Fundamental solution has the following form 

 ( )* 1 1
, , , ln

2
T x y

r
ξ η

π λ
=  (6) 

where r  is the distance between the points ( ),ξ η  and ( ),x y  

 ( ) ( )
2 2

r x yξ η= − + −  (7) 

Heat flux resulting from the fundamental solution can be calculated analytically 

 ( )*

2
, , ,

2

d
q x y

r
ξ η

π
=  (8) 

where 

 ( ) ( )cos cosd x yξ α η β= − + −  (9) 

while cosα, cosβ are the directional cosines of the boundary normal vector n. 

3. Dual reciprocity boundary method 

The solution of Poisson equation (1) can be written as a sum 

 ( ) ( ) ( )ˆ, , ,T x y T x y U x y= +  (10) 

where the first function is the solution of Laplace’s equation 

 ( ) ( )2 ˆ, : , 0x y T x yλ∈ Ω ∇ =  (11) 

while ( ),U x y  is the particular solution 

 ( ) ( ) ( )2
, : , ,x y U x y Q x yλ∈ Ω ∇ = −  (12) 
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It is generally difficult to find a solution ( ),U x y , so in the dual reciprocity 

method the following approximation for ( ),Q x y  is proposed [3] 

 ( ) ( )
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Q x y a f x y
+

=

≈ ∑  (13) 

where 
k
a  are unknown coefficients and ( ),

k
f x y  are approximating functions 

fulfilling the equations 

 ( ) ( )2
, ,

k k
U x y f x yλ− ∇ =  (14) 

In equation (13) N L+  corresponds to the total number of nodes, where N  is the 

number of boundary nodes and L  is the number of internal nodes. 

Putting (14) into (13) one has 
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We consider the last integral in equation (3) 
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Using the second Green formula one obtains 
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or 
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where 

 ( ) ( ), ,

k k
W x y U x yλ= − ⋅∇n  (19) 
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So, the equation (3) takes the following form 
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In numerical realization of DRBEM the boundary is divided into N  constant 

boundary elements and L  internal nodes are distinguished. The integral appearing 

in equation (20) are substituted by the sum of integrals over the boundary elements 

and then 
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or 
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where 
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and 
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We define 
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where 
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Using the formula (19) we obtain 

 
1 1

2 3
j k j k j kW d rλ

 
= − + 

 
 (27) 

where 

 ( ) ( )cos cos
j k k j k k j k

d x x y yα β= − + −  (28) 

Because 

 2
1

s k s k
U r∇ = +  (29) 

so on the basis of equation (14) one has 

 ( )1
s k s k
f rλ= − +  (30) 

The equation (13) can be expressed as follows 
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The system of equations (31) can be written in the matrix form 
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This system allows to calculate the coefficients , 1, 2, ..., .
k

a k N L= +  The equa-

tions (22) can be also written in the matrix form 

 ( )+= −Gq HT GW HU a  (33) 

where 
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and 

 

11 12 1

21 22 2

,1 , 2 ,

...

...

... ... ... ...

...

N L

N L

N N N N L

U U U

U U U

U U U

+

+

+

 
 
 =
 
 
  

U  (36) 

while 
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After solving the system of equations (33), the temperatures and heat fluxes at 

boundary nodes are known. Next, the temperatures at the internal nodes are calcu-

lated using the formula (c.f. equation (21)) 
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4. Example of computations 

The square of dimensions 0.03×0.03 m has been considered. Thermal conduc-

tivity equals λ = 1 W/(mK). On the left part of the boundary the Neumann condi-

tion qb = −10
4
 W/m

2
 has been assumed, on the remaining parts of the boundary 

the Dirichlet condition o

100 C
b
T =  has been accepted. The boundary has been 

divided into 20 constant boundary elements, 25 internal nodes are distinguished. 

In order to compare the results obtained using DRBEM with the results obtained 

by BEM, in the second case the interior has been divided into 25 constant internal 

cells (Fig. 2). 

The calculations have been done for three different source functions, this means: 

1. ( ) ( )7 2 2
, 10Q x y x y= +  



Dual Reciprocity Boundary Method for the Poisson Equation 

 

135

2. ( ) ( )7 3 3
, 10Q x y x y= +  

3. ( ) 7 2 7 2
, 10 5 10 .Q x y x y= + ⋅  

In the Table 1 the results of computations are shown. 

 

 

Fig. 1. Discretization and internal nodes (DRBEM) 

 

Fig. 2. Discretization (BEM) 

Table 1 

Comparison of the BEM and DRBEM 

Internal node Variant 1 Variant 2 Variant 3 

 

1 

2 

3 

4 

5 

BEM 

430 

245 

171 

132 

107 

DRBEM 

429 

247 

174 

135 

110 

BEM 

433 

248 

174 

135 

110 

DRBEM 

433 

248 

175 

135 

110 

BEM 

428 

243 

170 

130 

105 

DRMEB 

422 

245 

173 

134 

110 
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