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Abstract. The density-matrix renormalization-group method has been applied to the modi-

fied d = 1 Rubinstein-Duke model for polymer dynamics, where hernias are considered. 

This simple model demonstrates the crossover from reptation to Rouse dynamics. 

Introduction 

In the past decade the motion of long linear polymers has been successfully 

treated by stochastic lattice models of hopping reptons. In a gel or in a polymer 

melt, the motion of a polymer is largely confined to reptation in a tube, which  

restricts sideways motion. In a dilute solution in a fluid, the polymer has however  

a much larger degree of freedom. So one distinguishes in polymer dynamics  

between reptation, which is the motion in a fixed confining tube and Rouse  

dynamics, which applies to polymers is a fluid [1]. Both forms of motion have 

distinct characteristics, if only one form of motion is present. Rouse dynamics 

leads to a diffusion coefficient decaying as N
−1
 for long chains, where N is the 

number of moving units (the reptons) of the chain. Reptation on the other hand is 

much slower and the diffusion coefficient decays as N
−2
. Similar behavior is  

observed for the renewal time which increases as N
2
 for Rouse dynamics and as  

N
3
 for reptation. There has been a dispute on the precise values of the exponents, 

since there seemed to be a discrepancy between the theoretical exponents given 

here and the experimentally observed values. This issue has been clarified recently 

by means of a careful finite-size scaling analysis. A less studied question is the 

crossover from Rouse dynamics to reptation. 

Therefore it is interesting to study the asymptotic behavior of the diffusion  

coefficient and the renewal time when both mechanisms are present. This note 

addresses the crossover problem, albeit in a simplified setting. Apart from Rouse 

dynamics and reptation there is a form of motion which holds the middle between 

the two. It is the formation and annihilation of hernias. A hernia is a sideways  

motion of  a repton, which does not modify the confining tube. In dimensions d = 2 

and higher, hernias are believed to have only a marginal influence on the diffusion 

coefficient and renewal time, by and large because the hernias grow and shrink not 

affecting the backbone of the tube. Only hernias close to the end of the chain can 

change the tube substantially. 
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However in dimension d = 1, the situation is different. Sideways motion is not 

possible of course, but a one-dimensional chain is full of hernias, since the chain 

can only progress back and forth and every step in the foreward direction, followed 

by a step backward is a hernia. Considering the chain as a random walker, one 

finds that the number of hernias is of the same order as the number of links  

between the reptons. Now, if the hernias are fixed and if they can only disappear or 

be created by the retraction and extension of the ends of the chain, the basic  

motion is that of reptation. In this note a one-dimensional model is studied which 

includes reptation and hernia annilation and creation. It shows crossover from the 

reptation exponents to the Rouse exponents as a function of the creation/annihi-

lation rate of the hernias. The crossover regime is described by a crossover func-

tion, which we determine for the model. 

1. The model 

The model is a one-dimensional chain of N+1 reptons, connected by N links, 

y1,…, yN. The links are either in the forward direction, yi = 1, or in the backward 

direction yi = −1, or have the value yi = 0. The cases yi = ±1 are considered as taut 

links, while yi = 0 is a slack link or an element of stored length. The basic motion 

rule is the hopping of this stored length unit along the chain, by interchanging with 

slack links. If it moves in the forward direction, its transition rate is biased by  

a factor B > 1, while the hopping rate in the backward direction is decreased by  

the factor B
−1
 < 1. The biases represent an external field driving the reptons of  

the chain. At the end of the chain the links may change form slack to taut and vice 

versa, thereby adding or subtracting an element of stored length, again with a bias 

depending on the direction of the transport of length. These motion rules form the 

much studied Rubinstein-Duke (RD) model [2]. Our new element is that we allow 

a neighboring pair of opposite taut links to change into a pair of slack links and 

vice versa. We describe this as the annihilation viz. creation of a hernia. The tran-

sition rate for hernia creation/annihilation is h, multiplied with a bias based on the 

sign of motion of the middle repton of the hernia. 

Without hernia motion the RD model is a typical case of reptation. The tube, 

which is here the sequence of taut links, can only be changed from the ends. This 

is a slow process, since a taut link at distance l from the end can only disappear 

from the tube by at least l
2
 elementary steps. So the inner taut links survive at least 

N
2
 repton moves, if the change could renew itself in a systematic way. The change 

of configuration is however a diffusive process in configuration space and therefo-

re the average renewal time is N
4
 measured in single repton moves, or N

3
 in chain 

updates. So the reptation renewal time τ ∼ N
3
. Obviously hernia creation and anni-

hilation speed up the renewal of the chain and the point of this note is to see how 

they can overtake the reptation mechanism. 
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Our model is, as all the hopping models, governed by the Master Equation for 

the probability distribution P(Y) where Y stands for the complete configuration 

y1,…,yN. It has the form 
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The W 's are the transitions rates and the matrix M contains the gain terms (in the 

off-diagonal elements) and the loss terms (on the diagonal). Conservation of prob-

ability implies that the sum over the columns of the matrix vanishes. So the matrix 

has a zero eigenvalue and the eigenfunction corresponding to this eigenvalue is the 

stationary state of the system, to which every other initial state ultimately decays. 

The matrix is non-symmetric, due to the bias, which gives different rates to a pro-

cess and its inverse. So one has to distinguish between left and right 

eigenfunctions. The left eigenfunction belonging to the zero eigenvalue is trivial 

(all components equal); the problem is to find the right eigenfunction as the sta-

tionary state probability distribution. 

 

 
Fig. 1. Plot of zN as function of N−1/2 for several values of the transition rate h for hernia 

creation/annihilation 

The renewal time is given by the slowest decaying eigenstate. Thus the gap in 

the spectrum near 0 is the inverse renewal time. All eigenvalues must of have of 

course a negative real part, otherwise probability would grow unlimited. The form 

(1) stresses the similarity to quantum mechanical problems. Indeed the linear struc-

ture of the polymer chain makes it a one-dimensional quantum problem, however, 

with a non-hermitian hamiltonian. Our approach to the solution exploits this ana-
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logy by applying the so-called DMRG method [3] for quantum problems to find 

the properties of the transition matrix M. In previous publications this method has 

been described in detail [4]. Here we present only the results. 

2. Scaling exponents 

One of the advantages of the DMRG method is that it calculates the properties, 

e.g. the gap, for a growing length N of the chain. The drawback is that the calcula-

tions are lengthy and the values of larger N come in slowly. But the procedure is 

stable and can run for months without interference. This make the results very well 

suited for a finite size analysis. We convert the gap as function of N to a renewal 

time τ(N). In Figure 1 we present the local exponent zN, defined as 
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Fig. 2. Plot of xN as function of N−1/2 for several values of the transition rate h for hernia  

creation/annihilation 

The DMRG method gives very accurate values such that the small differences 

in (2) do not spoil the accuracy. Conventionally the renewal time refers to the  

unbiased (or undriven) system. The various curves correspond to different values 

of h. We have found earlier [4] that the proper way to plot it as function of N, is to 

use N
−1/2
 on the horizontal axis. Some features are noteworthy: 

• It takes very large values N to reach the asymptotic regime. This is the origin of 
the earlier mentioned controversy between theory and experiment. In particular 
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the plateau in the h = 0 curve (the pure reptation case) may easily lead to the 

conclusion that the exponent has settled on the (too large) value. 

• The influence of the parameter h is quite strong for long chains in particular for 
small values of h. We come back on this point when we discuss the crossover 

behavior. 

• The asymptotic behavior of the exponent (for N → ∞) differs for h = 0 from all 

the other curves. While the theoretical value z∞ = 3 for reptation, is compatible 

with the data, it is definitely excluded for the curves h ≠ 0. They rather point to 

the common value z∞ = 2. 

In Figure 2 we plot in the same way the local exponent xN for the diffusion co-

efficient. The diffusion coefficient is obtained by the Einstein relation from the 

drift velocity in the limit of small driving fields [4]. The drift velocity is easily 

found from the probability distribution of the stationary state. The picture has the 

same message as the previous one. It is clear that, without hernia motion (h = 0), 

the exponent evolves towards the value 3, while for any non-zero value of h, it 

rather aims at a value 2. Again one has large corrections to scaling which make it 

difficult to conclude the exponent e.g. from log-log plots. 

3. Crossover scaling 

The point of crossover scaling is to represent the data for various values of h in 

one single curve. Anticipating the asymptotic values of the two regimes: h → 0 

and a fixed h ≠ 0, the following representation is adequate for the renewal time 

 ( ) ( )NhgNhN α

τ
3

, =  (3) 

The crossover scaling function g(x) should have a finite value g(0) and behave 

for large argument as g(x → ∞) ∼ 1/x, in order that the expected asymptotic behav-

ior results for the two regimes: reptation dominated and hernia dominated. In  

Figure 3 we have plotted the same curves as in Figure 1 but against the combina-

tion h
1/2
 N. The observed data collapse is the proof for crossover scaling. 

In Figure 4 we do the same for the diffusion coefficient in the form 

 ( ) ( )NhfNhND α2
,

−
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Now the crossover scaling function f approaches again a finite value at x = 0 

and for large arguments, it should behave as f(x → ∞) ∼ x. The data collapse for 

the choice α = 1/2, but not as nice as for the renewal time. So further finite-size 

corrections are visible. 

The exponent α = 1/2 is the best exponent for data collapse, but its precise 

value cannot be deduced from the data. Our preference for α = 1/2 is based on the 

simple estimate of the times to remove a hernia for the two mechanisms. As we 
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mentioned, pure reptation requires N
2
 single repton moves to remove a hernia.  

For the competing process of annihilating a hernia, it takes 1/h repton steps.  

The fastest process dominates and the crossover scaling function should be  

a function of the ratio h N
2
. 

 

 

Fig. 3. The scaling form for the renewal time for various values of h 

 

Fig. 4. The scaling form for the diffusion coefficient for various values of h 
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Conclusions 

We have presented a simple model which demonstrates the crossover from 

reptation to Rouse dynamics. In our one-dimensional model hernia annihilation 

and creation play the same role as the tube changes which are allowed in Rouse  

dynamics. Longer calculations, which will sharpen up the results and the conclu-

sions, are in progress. 

In a paper by Sartoni and van Leeuwen [5], the one-dimensional reptation with 

hernia creation and annihilation was connected with a simpler model of two types 

of particles which move independent of each other along the chain. They also con-

clude that the diffusion coefficient decays as N
−1
, but they have to stick to  

a hernia creation and annihilation rate equal to the hopping rate of the reptons. 

Here we could vary this rate at will and therefore study the crossover behavior. 
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