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Abstract. The capillary bridge between ellipsoidal grains is modelled within a toroidal 

approximation and the cohesive energy as function of grain’s size, wetting angle and liquid 

content is computed. Some substrate-liquid examples are considered. 

Granular materials are common in Nature and they exhibits a variety of unusual 

phenomena [1]. It is known that many mechanical properties of a granulate change 

if some liquid is added. Even small amount of interstitial liquid adds an attractive 

force to the system and then, increase its stability [2-10]. A study of the effects  

of liquid on static and dynamic properties of dense two-dimensional grain  

ensembles is of interest in many branches of industry because humidity causes 

problem in processes such as segregation, transport or packing. The main reason is 

the internal cohesion due to capillary forces arising from liquid bridges between  

the grains. 

To describe the behaviour of wetting liquid and solid state grain we assume that 

grains have porous surfaces. Capillary bridges need a certain amount of liquid 

content to form properly, since the liquid is at first bound on the grain surfaces  

due to the roughness. Two regimes of the inter-grain adhesive force versus volume 

of the wetting layer have been considered: the asperity regime for very small  

amount of liquid and the saturated regime for larger content of liquid. In case  

of asperity regime the capillary forces come from the fluid accumulated around 

small number of asperities at which two neighbouring grains in contact. This case 

has been already discussed in [11]. If all asperities are filled we deal with saturated 

regime. 

Most of grains are not spherical. Thus, it is important to analyze how the  

macroscopic curvature of contacted grains influences on an inter-grain adhesive 

energy. Here we consider the ellipsoidal grains. For this shape of grain there are 

three different grain - to - grain arrangements presented in Figure 1. 

The geometry of the liquid bridge is characterized by wetting angle, surface  

tension of liquid, size and shape of grains. Commonly used approach is based on 

the Laplace-Young equation 
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where ∆P is the capillary suction pressure, γ is the liquid surface tension and un-

known function y(x) is a curvature of the capillary bridge. The Equation (1) cannot 

be solved analytically [12]. 

 

 

Fig. 1. Essentially different arrangements of ellipsoidal grains for saturated regime 

In Figure 1, for the configuration (a) the rotational symmetry of grains and liquid 

is conserved and so we can approximate the complicated free - liquid surface by simpler 

surface, i.e. by a toroid. Within the toroidal approximation the Equation (1) becomes 
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Here r1 is the radius of curvature of the liquid bridge at point P in the horizontal 

plane and r is the radius of the curvature in the vertical plane going through the 

axis of symmetry. An approximate, toroidal capillary bridge is presented in  

Figure 2. 

The geometry of the problem is characterized by wetting angle θ, liquid volume Vk 

and two semi-axis: the minor axis α and the major axis b = kα, k ≥ 1. Cross-section 

of the grain and the capillary bridge gives an ellipse and a circle: 
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Fig. 2. The fragment of a cut of ellipsoidal grain and liquid bridge for the (a) arrangement. 

The shaded area A is filled with wetting liquid [13] 

In order to determine a lateral surface of the liquid bridge it is necessary to esti-

mate the length of an arc between points P(xp, yp) located on two grains. The 

length of this arc depends on volume Vk of the capillary bridge. From Equations 

(3), (4) and Figure 2, we obtain: 
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Comparing (5) and (7) we get the relation between the liquid content Vk (given by 

R, β, θ) and the grain size (given by α, k) 
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So, using the Guldin-Pappus theorem and the Equation (8) we compute the free 

surface of the liquid bridge Sb 
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where: 
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and c = k tan(β). 

The cohesive energy E for the A-A grain arrangement (see Figure 1) is given by  

 
b

SE γ=      (10) 

where γ is the liquid surface tension and Sb is given by the Equation (9). 

In Table 1 the values of Sb are given for some θ ′s grain size α, k for the liquid 
amount Vk = 10

−2
 of the grain’s volume. In Table 2 the same is computed for  

different substrate and liquid pairs. 

 
Table 1 

Numerical values of Sb for k = 2 [13] 
 

A [mm] 0.01 0.02 1 2 5 

θ π/40 π/40 π/12 π/11 π/11 π/40 π/12 π/11 

Sb [mm2] 2.5 ⋅ 10−4 1.06 ⋅ 10−3 2.43 2.09 8.39 66.18 60.73 52.48 

 
Table 2 

Capillary - bridge - cohesive energy E for ellipsoidal grains; α = 10
−3
 m,  

k = 2, VK = 10
−2
 of the grain’s volume 

 

substrate-liquid γ [10
−2

 J/m
2
] θ [°] E = γSb [J] 

quartz-water 

zinc-mercury 

polymethacrylate methyl-water 

7.28 

48.0 

7.28 

0 

10 

56 

13.68 · 10
−8

 

90 · 10
−8

 

13.90 · 10
−8
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In conclusion we computed the cohesive energy between ellipsoidal grains due 

to the small amount of liquid. We approximate free - liquid surface of the bridge 

by an toroid for (a) grain arrangement, see Figure 1. For (b) and (c) arrangements 

the toroidal approximations is not valid and other approximation is needed. 
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