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Abstract. The aim of this contribution is to analyze the propagation of initial temperature 

disturbances on a macroscopic level. The main result of in this contribution is a formulation 

of an independent system of equations describing the above problem. The derived macro-

scopic heat transfer equations will be represented by the independent temperature distur-

bance equations and by the equation for the microscopic (averaged) temperature field. To 

make this note self-consistent we outline in the subsequent sections the basic preliminary 

concepts of the tolerance averaging technique. The detailed discussion of this technique 

can be found in [5]. 

1. Object of the paper 

The object of considerations is a heat propagation in the micro-periodic rigid 

conductor based on the hyperbolic heat conduction law. Problems of this kind were 

investigated in a series of papers and can be described by using various heat propa- 

gation constitutive laws [2-4]. In this contribution we restrict considerations to 

the simplest hyperbolic heat transfer law which is due to Cattaneo and takes into 

account only one relaxation time t. The main attention will be devoted to rigid 

conductors with a micro-periodic non-homogenous structure. Thus, the governing 

hyperbolic heat transfer equation has highly oscillating and non-continuous func-

tional coefficients. That is why we shall deal with a certain macroscopic model of 

the problem under consideration which will be based on the tolerance averaging 

technique which has been summarized in [5] and developed in a series of papers. 

Notation: Superscripts A, B ran over the sequence 1,2,…,N, summation conven-

tion holds. Gradients with respect to the space coordinates will be denoted by ∇ 

and time derivative by overdot. 

2. Preliminaries 

We shall deal with a rigid heat conductor which has ∆-periodic non-homoge-

nous structure, with ∆ = (−l1/2,l1/2)×(−l2/2,l2/2)×(−l3/2,l3/2). It is assumed that 

diameter l of a periodic cell ∆ is sufficiently small when compared to the minimum 

characteristic length dimension of a region Ω in the 3-space R
3
 occupied by the 
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conductor. Setting x = (x1, x2, x3) we define ∆(x) = x + ∆ as a periodicity cell with 

a center at a point x. We also define { }0
: : ( )Ω = ∈Ω ∆ ⊂ Ωx x  and introduce avera- 

ging operator setting 

 ( ) ( )1
| |

( )

,f f d
∆

∆

〈 〉 = ∈Ω∫ 0

x

x z z x  (1) 

where f is an arbitrary integrable function. We recall that function ( )F ⋅  defined in 

Ω is slowly-varying (with respect to a certain tolerance system T [5]) F ∈ SV∆(T), 

if the following tolerance approximation formula 

 ( ) ( ) ( ),gF g F〈 〉 ≅ 〈 〉 ∈Ω
0

x x x x  (2) 

holds for an arbitrary integrable function g defined in Ω. Let θ(x,t), x ∈ Ω is  

a temperature field at time t. Define ϑ(x,t) ≡ 〈θ〉(x,t) as a macroscopic temperature. 

The first fundamental restriction imposed on the temperature field in the frame- 

work of the tolerance averaging technique will be given by the following decom-

position of the temperature field 

 ( , ) ( , ) ( , )t t tθ ϑ ψ= +x x x  (3) 

together with the assumption 

 ( , ) ( )t SV Tϑ
∆

⋅ ∈  (4) 

Thus, we conclude that 

 ( , ) 0tψ〈 〉 ≅x  (5) 

and hence ψ can be interpreted as a certain disturbance of a temperature field θ. 

The second fundamental restriction of the tolerance averaging technique is im-

posed on the temperature disturbance ψ and is given by 

 ( , ) ( ) ( , ),
A A

t h tψ ϑ= ∈Ω
0

x x x x  (6) 

where h
A
(⋅), A = 1,...,N is a system of ∆-periodic continuous functions which are 

piecewise smooth and satisfy condition 〈h
A
〉 = 0. Moreover, values of h

A
 are of an 

order O(l). Functions h
A
, termed shape functions, are assumed to be known a priori 

in every special problem under consideration. The form of shape functions can be 

obtained by a periodic discretization of a cell ∆, cf. [6]. Moreover, we assume that 

new basic unknowns ϑ
A
(x,t), x ∈ Ω0, are slowly-varying functions 

 ( , ) ( )
A

t SV Tϑ
∆

⋅ ∈  (7) 

and will be called temperature fluctuations amplitudes. 
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3. Macroscopic model equations 

The starting point of the modeling procedure is a known Cattaneo hyperbolic 

heat transfer equation with one relaxation time 

( ) 0c c
τ
θ θ θ+ −∇⋅ ⋅∇ =A&& &  

where A, c, cτ are: a heat conduction tensor, a specific heat and the modified spe-

cific heat with relaxation time τ. For a non-homogenous micro-periodic conductor 

c, cτ and A are ∆-periodic functions of x which, as a rule are non-continuous and 

highly-oscillating. 

The tolerance averaging technique applied to the above equation leads to the 

following system of equations with constant coefficients for a micro-temperature ϑ 

and temperature fluctuation ϑ
A 

( ) 0

0, 1,...

A A

A B B A B B A B B A

c c h

c h h ch h h h h A N

〈 〉 + 〈 〉 −∇ 〈 〉 ⋅∇ + 〈 〉 ⋅∇ =

〈 〉 + 〈 〉 + 〈∇ ⋅ ⋅∇ 〉 ⋅ + 〈∇ ⋅ 〉 ⋅∇ = =

A A

A A

&& &

&& &

τ

τ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

 (8) 

It has to be remembered that the above equations have a physical sense if ϑ(⋅,t), 

ϑ
A
(⋅,t) are slowly-varying functions according to formulae (4) and (7). Equations 

(8) have to be satisfied for every x ∈ Ω. Due to the fact that equations (8) for ϑ
A
 

are ordinary deferential equations we have to formulate the boundary conditions 

only for the macroscopic temperature field ϑ, provided that the region Ω is 

bounded. Subsequently we shall deal with initial value problems for (8) by asum-

ming that t ≥ 0. On a macroscopic level initial conditions for a temperature field θ 

are given by 

 ( ,0) ( ), ( ,0) ( ),= = ∈Ωx x x x x
& %θ θ θ θ  (9) 

By means of the composition (3) and assumption (6) for a microscopic temperature 

ϑ and temperature fluctuation ϑ
A
 we obtain 

 
( ,0) ( ) ( ,0) ( )

,
( ,0) ( ) ( ,0) ( )

A A

A A

h

h

ϑ ϑ θ

ϑ ϑ θ

 + =
∈Ω

+ =
0

x x x x

x

x x x x
& & %

 (10) 

Bearing in mind conditions (10) we shall restrict considerations to the class of ini- 

tial conditions (9) given by 

 
0

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )

A A

A A

h

h

 = +
∈Ω

= +

x x x x

x

x x x x
% % %

θ ϑ ϑ

θ ϑ ϑ

 (11) 
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Under the aforementioned restriction the initial conditions for equations (8) take 

the form 

 
( ,0) ( ), ( ,0) ( )

,
( ,0) ( ), ( ,0) ( )

A A A A

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

 = =
∈Ω

= =
0

x x x x

x

x x x x

& %

& %
 (12) 

where , , ,

A A
ϑ ϑ ϑ ϑ% %  are assumed to be known. 

4. Analysis 

In the subsequent analysis considerations will be restricted to the initial value 

problems for equations (8); we tacitly assume that the boundary condition for the 

macroscopic temperature field ϑ is satisfied. The aim of the analysis is to answer 

the question how an initial value on the temperature fluctuations ,
A A

ϑ ϑ%  propagates 

for t > 0. To this end we shall decompose the temperature fluctuations ϑ
A
 into three 

terms 

 
0 1 2

A A A A
ϑ ϑ ϑ ϑ= + +  (13) 

Fields 
0

A
ϑ  have to satisfy equation 

 
0

A B B A
h h hϑ ϑ〈∇ ⋅ ⋅∇ 〉 = −〈∇ ⋅ 〉 ⋅∇A A  (14) 

and 
1

A
ϑ  are governed by 

 
1 1 1

0
A B B A B B A B B

c h h ch h h h
τ

ϑ ϑ ϑ〈 〉 + 〈 〉 + 〈∇ ⋅ ⋅∇ 〉 =A&& &  (15) 

together with initial conditions 

 
1

1

( ,0) ( )
, 1,..., ,

( ,0) ( )

A A

A A
A N

ϑ ϑ

ϑ ϑ

 =
= ∈Ω

=
0

x x
x

x x& %
 (16) 

Hence fields 
2

A
ϑ  have to satisfy the following system of equations: 

 
2 2 2 0 0

A B B A B B A B B A B B A B B
c h h ch h h h c h h ch h
τ τ

ϑ ϑ ϑ ϑ ϑ〈 〉 + 〈 〉 + 〈∇ ⋅ ⋅∇ 〉 = −〈 〉 − 〈 〉A&& & && &  (17) 

together with homogenous initial conditions 

 
( )

( )

2

2

,0 0
, 1,..., ,

,0 0

A

A
A N

ϑ

ϑ

 =
= ∈Ω

=
0

x

x

x
&

 (18) 
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Let us observe that 2
( )

A B
c h h O l
τ

〈 〉∈  and 2
( ).

A B
ch h O l〈 〉∈  Now we shall introduce 

an additional approximation that equation (17) has to be satisfied after neglecting 

terms of an order O(l
2
) situated on the right-hand side of (17). Under this approxi-

mation, bearing in mind conditions (18), we conclude that 
2

0
B

ϑ ≅  and hence the 

decomposition (13) can be approximated by 

 
0 1

, 1,...
A A A

A Nϑ ϑ ϑ≅ + =  (19) 

The final conclusion is that equation (8) can be approximated by a system of equa- 

tions (14) and (15). At the same time functions 
1

A
ϑ  have to satisfy initial conditions 

(16). 

Let us observe that the first from equations (8) combined with (14) leads to the 

following equation for the microscopic temperature θ 

 0

1
:

A A
c c h
τ
ϑ ϑ ϑ ϑ〈 〉 + 〈 〉 − ∇∇ = 〈 ⋅∇ 〉 ⋅∇A A&& &  (20) 

Here A
0
 is defined by 

0
K

A AB B
h h= 〈 〉 − 〈 ⋅∇ 〉 〈∇ ⋅ 〉A A A A  where K

AB
 represents the 

linear transformation R
N
 → R

N
 given by 

1
K [ ] .

AB A B
h h

−

= 〈∇ ⋅ ⋅∇ 〉A  

Eqs (20) together with initial and boundary conditions for the macroscopic tem- 

perature ϑ and eqs (15) together with initial conditions (16) for 
1

A
ϑ  constitute the 

final macroscopic model for the analysis of initial-boundary value problems. After 

obtaining solution ϑ,ϑ
A
, A = 1,...,N to a certain problem we obtain from (3), (6), 

(14) and (19) the formula 

 
1

( , ) ( , ) ( )K ( , ) ( , )
A AB B A A

t t h h t h t= − 〈∇ ⋅ 〉 ⋅∇ +∇x x x A x xθ ϑ ϑ ϑ  (21) 

which have to hold for every x ∈ Ω0 and t ≥ 0 and which describes the distribution 

of the temperature field in a periodic conductor under consideration. 

5. Conclusions 

The main conclusion of this contribution is that the temperature field θ in a pe-

riodically non-homogenous rigid conductor is determined by a part depending on 

the macroscopic temperature field ϑ and a certain fields 
1

A
ϑ  governed by eqs (15) 

and initial conditions (16). The second conclusion is that the disturbances of initial 

temperature, described by ( ), ( ), ,
A A

∈Ω
0

xx x
%ϑ ϑ  propagate according to the ordi-

nary deferential equations (15). It has to be emphasized that the problem under 

consideration cannot be solved in the framework of the well known homogenous 

model of a periodic conductor, since this model does not involve coefficients 
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depending on the period lengths [1]. The discussion of the propagation problem 

for the above initial temperature disturbances will be given during the presentation 

of this contribution. 

Example of applications of the obtaied model equation (15) will be explained 

in widened version of this note. 
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