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Abstract. In this contribution we are to show that on the boundaries of a laminated me- 

dium, which are perpendicular to the laminae interfaces, we observe some near-boundary 

phenomena related to the oscillatory character of the boundary tractions. The aim of this 

note is to describe and discuss those phenomena in dynamic problems. The analysis is 

carried out in the framework of the tolerance averaging technique. General considerations 

are illustrated by a certain special problem describing decay of the traction oscillations. 

1. Introduction 

The object of considerations is a linear-elastic periodically laminated half-space. 

The boundary of the half-space is assumed to be perpendicular to the laminae inter- 

faces. We are to show that in this case we deal with a certain near boundary effect 

caused by the periodic structure of the medium. In order to investigate this effect 

we shall apply the tolerance averaging technique [2], which makes it possible to 

investigate the effect of the period length on the macroscopic behaviour of a lami-

nated solid. It has to be remembered that the effect under consideration cannot 

be described in the framework of the well-known homogenization procedure [1]. 

In this note the tolerance averaging technique will be presented in a certain simpli-

fied manner. The main new result of this contribution is a formulation of a certain 

boundary effect equation. This equation is a starting point for detailed analysis 

of the problem under consideration. 

2. Preliminaries 

To make this note self-consistent we shall outline below the modelling approach 

based on the tolerance averaging technique and leading to a certain macroscopic 

model of a laminated medium. However, the procedure constitutes a certain modi-

fication of that given in [2]. Analysis will be carried out in a Cartesian orthogonal 

coordinate system Ox1x2x3 with x1 ≥ 0 as a laminated half-space, and a periodic 

structure in the Ox3-axis direction. For the sake of simplicity we assume that the 

problem is plane and independent of the x2-coordinate. By t we denote a time coor- 

dinate. Partial differentiation will be denoted by comma and time differentiation 

by overdot. The considerations will be restricted to a laminated medium with two 
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kinds of laminae having thicknesses l’ and l”; hence l = l’ + l” is an inhomogeneity 

period length. Recalling the general procedure discussed in [2] we shall use the 

averaging operator 
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where x ≡ x3 and f is an arbitrary integrable function. Function f can also depend on 

arguments x1, t as parameters. Obviously, if f is l-periodic function (i.e. function 

with a period l) then 〈f〉 = const. Define U ≡ 〈u〉, where u(⋅) is a displacement field. 

As a basic kinematic assumption we introduce the decomposition of the displace-

ment 
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where g(⋅) is l-periodic continuous function (termed a shape function) such that: 
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and linear in (0, l’) and (l’, l). Functions U(⋅), V(⋅) are new kinematic unknowns 

which are assumed to be slowly varying together with all their derivatives as func-

tions of the x3-coordinate. We recall that F is a slowly varying function of an ar-

gument x3 provided that the following tolerance averaging formula holds 

 
1 3 1 3 1 3

( , , ) ( , , ) ( , , )fF x x t f x x t F x x t〈 〉 ≅ 〈 〉  (2) 

in which ( )f ⋅  is an arbitrary integrable function of x3. 

Let T and E stand for the stress and strain tensors, respectively. We shall assu-

me that every material plane x3 = const is an elastic symmetry plane. Hence the 

stress-strain relations for a laminated medium under consideration will be assumed 

in the well-known form 

 :=T Eℂ  (3) 

where ℂ  is a tensor of elastic modulae. In the problem under consideration ℂ  is 

l-periodic function of x3. Under denotations ∇ = (∂1, ∂3) and ∂ = (∂1,0) from as-

sumption (1) and the strain - displacement relation E = (∇u + ∇u
T
)/2 we obtain 

 g g∇ ≅∇ +∇ + ∂u U V V  (4) 

In order to formulate the averaged form of equations for U, V we shall use the 

equations of motion 

 0ρ −∇ =u Tɺɺ  (5) 
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where ρ is a mass density (which is l-periodic functions of x3). In (5) we have 

neglected the effect of body forces on the dynamic behaviour of the laminated 

medium. Averaging the above equation and averaging the product of this equation 

with a shape function g, from Equations (1)-(4) we obtain: 
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Equations (6) constitute a system of the second order partial differential equations 

for the basic unknowns U, V which have to be satisfied in a half space x1 > 0. It can 

be seen that all coefficients in this system are constant. That is why the above sys-

tem represents a certain macroscopic model of a laminated medium under consid-

eration. Eqs (6) were derived in [2] by using an alternative procedure; a detailed 

discussion of these equations can be found in [2]. It has to be emphasized that 

Eqs (6) have a physical sense only if unknowns U, V together with their derivatives 

are slowly varying functions of an argument x3 in the meaning of formula (2). 

Moreover, the underlined terms in (6) describe the effect of the period length 

on the macroscopic behaviour of the laminate; this effect is not taken into account 

if we deal with a homogenized model of a laminate [1]. On the other hand, Eqs (6) 

neglect certain terms which were derived by using the effective stiffness method 

of modelling [3]. However, these terms have not an important meaning for a solu-

tion to the initial boundary value problems for a medium under considerations. 

3. Boundary conditions 

Equation (6) will be considered together with the stress boundary conditions on 

x1 = 0. Let p(x3,t) be a traction at the half-space boundary and n = (−1,0) be a unit 

vector normal to the boundary of a laminated medium. Hence 

( )[ : : ]g g= ⋅ = ∇ + ⋅∇ ⋅ + ∂ ⋅p T n U V V nℂ ℂ ℂ  

The class of boundary tractions will be restricted to the form 
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( , ) ( , ) ( ) ( , )x t x t r x x t= +p p p  (7) 

where ( )r ⋅  is a certain l-periodic function such that 〈r〉 = 0 and p0(⋅,t), p1(⋅,t) are 

slowly varying functions. Hence 〈p〉 ≅ p0, 〈pr〉 ≅ p1〈r
2
〉 and the stress boundary 

conditions for equations (6) can be assumed in the form 
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In applications function r can be assumed as either r = g’ or r = g. An alternative 

form of the stress boundary conditions can be also obtained by assuming that r 

is a periodic vector function defined by r = ∇g; in this case p1 is a scalar function 

representing share tractions. 

4. Boundary effect equation 

In order to describe the effect of the boundary tractions on the macroscopic be-

haviour of a laminated half-space we shall formulate a certain approximate form of 

equations (6) and boundary conditions (8). To this and let us decompose vector 

field V, setting V = V0 + V1 + V2. Function V0 is assumed to satisfy equation 

0
:g g g〈∇ ⋅ ⋅∇ 〉 ⋅ = −〈∇ ⋅ 〉 ∇V Uℂ ℂ  

Solution to this equation takes the form 

0
: :g= − 〈∇ ⋅ 〉 ∇V K Uℂ  

where K is the inverse to .g g〈∇ ⋅ ⋅∇ 〉ℂ  It follows that the first from Eqs (6) can be 

reduced to the form 

 0

1 2
( : : ( ))gρ〈 〉 −∇ ⋅ ∇ + 〈 ⋅∇ 〉 ∇ + =U U V V 0ɺɺ ℂ ℂ  (9) 

where 0 g g= 〈 〉 − 〈 ⋅∇ 〉 ⋅ ⋅ 〈∇ ⋅ 〉Kℂ ℂ ℂ ℂ  is a certain approximation of the known 

effective elasticity tensor. Equation (9) has to be considered together with the first 

stress boundary condition (8). Function V1 is assumed to satisfy the following 

equation 

 2 2

1 1 1
( )g g g gρ〈 〉 + ∂ ⋅ 〈 〉 ⋅ ∂ − 〈∇ ⋅ ⋅∇ 〉 ⋅ =V V V 0ɺɺ ℂ ℂ  (10) 

The above equation has to be considered together with the second from stress 

boundary conditions (8). At the same time for V2 we obtain 

 2 2

0 2 2 0 2
( ) ( : ( ))g r g g gρ〈 〉 + + 〈 ∇ ⋅ ⋅∇ 〉 ⋅ − ∂ ⋅ 〈 〉 ∂ + =V V V V V 0ɺɺ ɺɺ ℂ ℂ  (11) 

together with homogenous boundary conditions. The idea of the proposed approxi- 

mation is to neglect in (11) terms of an order O(l
2
). In this case we obtain V2 ≅ 0. 

Thus, the proposed model equations reduce to the form 

 0

1
( : ) :g〈 〉 −∇ ⋅ ∇ = −〈 ⋅∇ 〉 ∇U U Vɺɺ ℂ ℂρ  (12) 

and 

 2 2

1 1 1
( : )g g g g〈 〉 + ∂ ⋅ 〈 〉 ∂ − 〈∇ ⋅ ⋅∇ 〉 ⋅ =V V V 0ɺɺ ℂ ℂρ  (13) 

Equation (12) has to be considered with the boundary conditions (8) for p0. Simi- 

larly, for equation (13) we have to take into account boundary conditions (8) for p1. 
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5. Illustrative example 

So far, the form of the function r in formula (7) has not been specified. Now as-

sume that the composition (7) is taken in the form 

 
0 1

gp= +∇p p  (14) 

where by virtue of ∇g = (0,g,3) term 
1
p  represents a scalar field which characterise 

the oscillating part of the boundary tractions which are tangent to the boundary 

x1 = 0. We can show that under condition (14) the boundary effect Equation (13) 

together with the boundary condition (8) depends only on the function V1: 
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The above relations can be also represented in the form: 
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Let as denote: 

1313
,≡G C    ( )

2
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Under the above notations the problem under consideration will be given by 
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The above boundary effect equation together with the boundary condition for 

x1 = 0 have to be considered with the condition at the infinity ψ → 0 when x1 → ∞. 

Now assume the boundary traction s  is harmonic in time and hence will be 

assumed in the form ( )3 cos .x tω=s s  Thus we can look for the solution ψ of 

Equation (17) in the form ( )1 3
, cosx x tψ ψ ω=  where for ψ  we obtain equation: 
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Under denotations 
2 2

1

,

ρ
ωΩ =
G

2 0

1

=

G
K
G

 we obtain 
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Taking into account conditions at the infinity we obtain finally 
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Formula (20) represents a solution to the boundary effect equation in the problem 

under consideration. Using this formula we can analyse the form of the decay 

function ψ as a function of dimensionless vibration frequency Ω and the period 

length. The particulars related to the above assertion will be discussed in a separate 

contribution. 

6. Conclusions 

The main conclusions is that Equation (13) involves only one unknown function 

V1. It can be shown that this equation together with an appropriate boundary con-

dition describes the effect of the traction disturbances p1 on the dynamic macro-

scopic solid behaviour. It follows that equation (13) can be referred to as the 

boundary effect equation since function V1 describes the disturbances of the dis-

placement field according to the decomposition (1). On the other hand, Equation 

(12) describes the solid behaviour independent on the boundary traction distur- 

bances. 
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