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INFERENCE FROM NONINFORMATIVE ML-II PRIORS

Pawel Kopcimzewski
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Czestochowa University of Technology

Abstract. The type II maximum likelihood (ML-II ) is considered in this paper. The
problem of finding the ML-I I prior is too complex, in many cases. But we propose some
methods of approximation ML-I I prior. Both noninformative and informative ML-I I
priors are considered. If no information is given about unknown prior then we wil l
construct a proper density which is approximately ML-I I prior. The theorem which let
us approximate ML-I I prior belonging to the given class of densities is formulated. The
methods of approximation ML-I I prior are simply and easy to applied. Al l required
calculations are done by MCMC algorithms.

1. Introduction

Let X £ lZn be an observable random variable with density f ( x \ 0) > 0, for
some unknown 0 6 0 C 7£p. The choice of prior distribution TT for parameter
9 £ 0 is considered, here. TT has a density with respect to a cr-finite measure v

For simplicity, TT will be used to denote both the distribution and the density
of parameter 0 G 0.

Definition 1. w(0) is called the improper density if f 7r(d9) — oc.
0

Methods of prior density choice are the most criticized point of Bayesian ana-
lysis. The choice of prior distribution is most often done subjectively. It is
justified with the simplicity of calculations of some characteristics from po-
sterior densities. There are noninformative and informative priors. Methods
of noninformative prior choice are: Jeffreys prior, invariance under repara-
metrization and conjucate priors. Informative priors are chosen by maximum
entropy method and ML-I I method.
Jeffreys prior is based on Fisher Information given by
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Jeffreys prior w(0) is given by

7r(0)oc [det/(0)]°-5

It is usually improper density.
Noninformative prior satisfies invariance under reparametrization if there

exist functions $, W, g such that, likelihood function f ( x \ 0) satisfies

f ( x \ 0) = $(*(* ) - q(x»

The uniform distribution is chosen for parameter 9(0). Then the prior n(0) is

A family of densities is said to be conjugate priors if for every prior density
ir(0) from this class the posterior density ir(0\x) also belongs to this class.
Maximum entropy method chooses prior distribution by maximizing functional

e

This method will be able to applied if the likelihood function f ( x \ 0) is not
given. It is used to choose prior distribution when some prior moments or
prior quantiles are known.

In the paper ML-I I method is considered. ML-I I method chooses a prior
distribution TT by maximizing marginal density f ( x )

f(x) = f f(x\0)x(M) (1)
e

It is a generalization of maximum likelihood method. The choice of prior di-
stribution depends on the vector x G 7£n. For that reason it is more objective
method than the others. It was introduced by Good [4,5]. Berger and Berliner
[1] analyzed robustness properties of ML-I I posterior estimators. Sivaganesan
and Berger [11] utilized ML-I I method in Bayesian robustness studies. They
determine the ranges of posterior quantities. Chaturvedi [2] utilized ML-I I pro-
cedure to robust Bayesian analysis of the linear model. For e- contamination
class the ML-I I posterior mean was estimated. Sivaganesan [10] found ranges
of the posterior mean, posterior median and posterior mode and calculated the
supremum of the posterior mean squared error for the ML-I I posterior mean.
Moreno and Carmona [8] considered the ML-I I prior selection related to se-
veral 5-contamination classes. They considered the class of all distributions
with known some quantiles and the class of unimodal distributions with some
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specified quantiles. Lee [7] applied ML-I I procedure to estimating hyperpara-
meters involved in conjugate priors. Waal and Nel [14] utilized ML-I I method
to derive a prior distribution from e-contamination class multivariate distribu-
tions and multivariate normal distributions. Gosh and Kim [6] proposed some
robust Bayes estimators of finite population mean using ML-I I priors.

In the paper the theorems which allows us to approximate ML-I I prior are
formulated. The noninformative ML-I I priors are considered, only.

2. An approximation of noninformative ML-II priors

If we have no information about parameter 6 then 0 is the set on which
likelihood function f ( x \ 0) is defined.

Definition 2, Let 0 denote the set defined as follows

0 - {9 € 0 : f ( x \ 0) = sup f ( x \ 9 } } (2)

From the general theorem [8] it results that for all prior distributions TT we
have

J f ( x \ e ) x ( M) < f ( x \ 9) (3)

0

Equality holds in (3) if and only if prior distribution TT is concentrated on the
set 0. From this theorem it follows that If no information is given about prior
distribution TT, then ML-I I prior is concentrated on the set 0. In most cases
the set 0 consists of one point, only. Hence ML-I I prior is concentrated on one
point.
The set 0 is difficul t to directly estimating, in many cases. From the idea
of Simulated Annealing algorithm we propose the method of approximating
ML-I I prior.

Theorem 1. If fl"(0|A) is a proper continuous density satisfying

(4)

where A > 0,
then the marginal density f(x\X) = J f(x\0)ir(d0\X) is the non-decreasing func-

0
tion of the parameter A satisfying

Urn /(x|A) = f ( x \ 0) (5)
A— »-co
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Proof
From the assumption of the theorem it follows that the density f(x\X) is

e ©

The derivative / («|A) after parameter A is

/ f(x\0) exp{Xf(x\0)}v(d0) f exp{Xf(x\0)}v(d0) - [/ f ( x \ 0) exp{Xf(x\0)}v(d0)}<

e
(7)

The derivative / (x\X) may be written in the form

f'(x\X) = Evf\x\0) - [Evf(x\0)}2 (8)

Hence
f'(x\X) > 0 (9)

We conclude that the density /(#|A) is non- decreasing function of parameter
A. Let 0& be some ^-measurable sets satisfying

§ c Qk

z/(0fc) > 0 for all k < oc

lim i / (0 jb \0) = 0 (10)
&— >-co

Let the function g(x\X, k) be defined as follows

/ f ( x \ 9) exp{A[/(x|^) - f(x\0)]}v(d9) + f(x\0)t,(Qk)

^ - (11)

From (11) we see that for all A < oo

lim <,(z|A,fc) = /(z|A) (12)
K— ̂ -00

Notice that f(x\ff) < f ( x \ 0) for all 0 e 6. Thus for aU k < oo

lim g(x\\,k) = f(x\9) (13)
A-^-oo

Hence
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lim f(x\X) = lim lim g(x\X,k)= lim lim g(x\X,k)
X—+oo A-^-oo k^-oo &—>-oo A—too

Ur^/(z|0) = /(z|0) (14)

The theorem is thus proved.
Notice that theorem 1 will be able to applied when f ( x \ 0) is not differentiate
at the point # 6 0. From theorem 1 two corollaries may be concluded.

Corollary 1. If we have no information about prior distribution TT then the
density (4) is approximately ML-II prior.

Corollary 2. // (4) is improper density then 7r*(0|A) is approximately ML-II
prior

7r*(0|A) oc exp{\f(x\0)}6@*(0) (15)

where 0*  denote the set satisfying

0 C 0*

7r*(d0|A) < oo (16)

0

3. An estimation of some characteristics from posterior density

If prior density w(0\) satisfies condition (4) then posterior density 7r(0| A, #)
wil l satisfy

7r(0|A,aO oc /(z|0)exp{A/(z|0)}  (17)

We use Hastings-Metropolis algorithm to generate the sample from posterior
density 7r(0|A,#). Suppose that q(9 k̂\9(k+l  ̂ is a transition density from the
state 0(k) G 0 to the state 0(h+ l) £ 0. In the fc-th step we generate a point
0(k+ l) from the density g(^W,^(fe+1))5 and next we accept the point 0(fc+1)
with probability

~/a(k+I} a(k}\\

,1}  (18)
1 ~' )J \'*£\v*"')  t;^Pt^J \x\uv )j

If the density fl(tf(*),tf(*+ 1)) satisfies

then acceptance probability «(#(*),0(*+1)) will be

(20)
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But if the density g(0(fc),0<*+1)) satisfies

q(0(k\fc+1)) oc exp{A/(z|0(*+1>)}  (21)

the the acceptance probability a(0(k\fc+1)) will be

«(*«>«>) = mb{fi«,l }  (22)

Some characteristics from posterior density 7r(0|A,x) will be able to estimated
if the sample {0^} is generated.
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