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Abstract. The paper presents the solution of the free longitudinal vibration problem for 

a multi-step rod with varying cross-section areas. The problem considered takes into 

account vibrations of rods with additional discrete spring-mass elements attached at their 

ends. The problem solution is obtained with the application of the Green’s function proper-

ties and the power series method. The presented numerical example shows the influence 

of the selected parameter characterizing the discrete element on free vibration frequencies 

of the system. 

1. Introduction 

The vibration analysis of non-uniform rods is the subject of papers [1-6]. The 

solution of the vibration problem in a closed form can be found in particular cases 

of the cross-sectional area and the mass per unit length of the rod. It is often as-

sumed that the mass is constant and the cross-sectional area varying with respect to 

the space variable. In this case the solution of the free vibration problem is well 

known for katenoidal, sinusoidal and exponentional rods [1]. For the rod with 

a cross-sectional area A(ξ) = (αξ + β)
c
, where c is a real number, a solution has 

been presented by Kumar [2] and Li [3]. The free vibration problem of a system of 

non-uniform rods coupled by springs was the subject of paper [5]. Such problems 

can be solved with the application of the Green’s function method. 

The Green’s function method was used in paper [7] to solve the vibration prob-

lem of a system of two uniform rods coupled by translational springs. The fre-

quency equation and mode shapes are expressed by Green’s functions correspond-

ing to rods which are components of the considered combined system. The appli-

cation of the method is possible only if the right Green’s functions are known. 

A solution of the free vibration problem for non-uniform rods carrying an arbitrary 

number of discrete elements was presented in reference [6]. 

In this paper, the Green’s function method is used to solve the free vibration 

problem of a rod consisting of any number of non-uniform segments. The neces-

sary Green’s functions have been derived with the use of a power series method. 

An example of numerical calculations of free longitudinal vibration frequencies 

of a multi-step rod is given. 
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2. Formulation and solution of the problem 

Consider a rod consisting of n non-uniform segments as shown in Figure 1. 

Assume that a discrete spring-mass element is attached at point x = L. Free vibra-

tion of the rod is governed by the following differential equations: 

 ( )1 1 1 1
, ( ) ( )u x t s t x L  = − L δ    for x ∈ [0,L1] (1) 

 ( ) 1 1
, ( ) ( ) ( ) ( )

i i i i i i
u x t s t x L s t x L

− −

  = − − + − L δ δ  x ∈ [Li−1,Li],  i = 2,..., n−1 (2) 

 ( ) 1 1
, ( ) ( ) ( , )

n n n n
u x t s t x L p x t

− −

  = − − + L δ    for  x∈[Ln−1,L] (3) 

where 
2

2
[ ( ) ] ( )ii i
EA x A x

x x t

∂ ∂ ∂
= −
∂ ∂ ∂

L ρ  for i = 1,2,…, n, ( )i
A x  is the area of 

the cross-section at point x of the rod, E is the modulus of elasticity, ρ is 

the mass density of the rod material, δ( ) denotes the Dirac delta function, 

( )
2

2

( , )
( , ) ( , ) ,n

n

u x t
p x t m ku x t x L

t

 ∂
= + − 

∂ 
δ  m and k are the discrete mass and the 

stiffness coefficient of the spring attached at point x = L, respectively. 

The functions ui satisfy homogeneous boundary conditions which may be symboli-

cally written in the following form: 
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Fig. 1. A sketch of a multi-step non-uniform rod with a spring-mass 

discrete element 
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where 
0

B  and 
1

B  are linear, spatial differential operators and L denotes the length 

of the rod. Moreover, at points Li the following continuity conditions are satisfied: 

 
1

( , ) ( , ),
i i i i
u L t u L t

+
=     i = 1,..., n−1 (5) 

Assuming that the natural frequencies of the rod are harmonic, i.e. substituting 

the functions: 

 ( , ) ( ) , ( , ) ( ) , ( )
j t j t j t

ii i iu x t U x e p x t P x e s t S e
ω ω ω

= = =  (6) 

into equations (1)-(3), one obtains: 

 
1 1 1 1
[ ] ( )U S l= −L δ ξ%    for 

1
[0, ]l∈ξ  (7) 

 
1 1

[ ] ( ) ( )
i i i i i i
U S S l

− −

= − + −L µ δ ξ δ ξ%    for [0, ]
i
l∈ξ , i = 2,..., n−1 (8) 

 
1 1

[ ] ( ) ( )
n n n n
U S P

− −

= − +L µ δ ξ ξ%    for [0, ]
n
l∈ξ  (9) 

where: 2
1,j = −  2 2

,EΩ = ρω  2 2
,EΛ = ρω  ,k m=ω  (0),ii i

S S EA=  ω are 

the natural frequencies of the rod, 
1
,

i
x L

−

= −ξ  li = Li−Li−1, (0) ,
n

m A=η ρ  

( ) ( ) ( )0 ,
i i i

A A x A=ξ  2 2
( ) ( ) ( ) ( ),

n n
P U l= Λ −Ω −ξ η ξ δ ξ  

1 1
(0) (0),

i i i
A A

− −

=µ  

( ) ( )2

i i i i

d d
A A

d d

 
= +Ω 

 
L ξ ξ

ξ ξ
%  for [0, ]

i
l∈ξ , i = 1,...n. 

The boundary and continuity conditions (4), (5) may be written in the following 

form: 

 
0 1 0
[ ] 0,U

=

=B
ξ

  
1
[ ] 0

n
n l
U

=

=B
ξ

  (10) 

1
( ) (0),
i i i

U l U
+

=   i = 1,..., n−1                                        (11) 

The solution of problems (7)-(11) is obtained with the use of the properties of 

Green’s functions Gi. If the Green’s functions are known, then the following rela-

tionships are obtained on the basis of equations (7)-(9): 

 
1 1 1 1
( ) ( , )U S G l=ξ ξ  (12) 

 
1 1

( ) ( ,0) ( , )
i i i i i i i

U S G S G l
− −

= − +ξ µ ξ ξ    for  i = 2,...n−1 (13) 

 2 2

1 1

( ) ( ,0) ( ) ( ) ( , )
n n n n n n n n

U S G U l G l
− −

= − + Λ −Ωξ µ ξ η ξ  (14) 
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A system of equations is obtained by substituting functions Ui(ξ) into continuity 

conditions (11): 

 
1 1 1 1 1 2 2 2 2
[ ( , ) (0,0)] (0, ) 0S G l l G S G l+ − =µ  (15) 

1 1 1 1 1 1
( ,0) [ ( , ) (0,0)] (0, ) 0,

i i i i i i i i i i i i i
S G l S G l l G S G l
− − + + + +

− + + − =µ µ  i = 2,3,...n−2 (16) 

An additional equation is obtained by setting in equation (14) ξ = ln: 

 2 2

1 1
( ,0) [1 ( ) ( , )] ( ) 0

n n n n n n n n n
S G l G l l U l
− −

+ + Ω − Λ =µ η  (17) 

The set of equations (15)-(17) may be written in the matrix form 

 A(ω) S = 0 (18) 

where S = [S1, S2,…, Sn−1, Un(ln)]
T
, [ ]ija=A  is n x n dimensional matrix with 

1 1
( ,0)

i i i i i
a G l
− −

= −µ  for i = 2,3,...,n; 
1

( , ) (0,0)
ii i i i i i
a G l l G

+
= + µ  for i = 1,2,...,n − 1; 

1 1 1
(0, )

i i i i
a G l
+ + +
= −  for i = 1,2,...,n − 2; 

2 2

1
( ) (0, );

n n n n
a G l
−

= Ω −Λη  1
nn
a = +  

2 2
( ) ( , )

n n n
G l lη+ Ω −Λ and the remaining coefficients aij are equal to zero. 

For a non-trivial solution of the problem, the determinant of the coefficient ma-

trix is set equal to zero, yielding the equation 

 det A(ω) = 0 (19) 

Equation (19) (the equation of natural frequencies of the rod, with unknown eigen-

frequencies ω) is then solved numerically. 

3. The use of the power series method in deriving 

the Green’s functions  

The solution Ui(ξ) of the eigenproblem (7)-(11) was obtained with the use of 

known Green’s functions. The Green’s functions Gi satisfy the equation: 

 ( ) ( ), ,

i i
G ξ ζ δ ξ ζ  = − L%    i = 1,2,…,n (20) 

Functions G1, Gn satisfied the boundary conditions (10) and Gi - the conditions 

corresponding to the free ends of the rod, i.e.: 

 ,
0

0,
i
G

=

=ξ
ξ

 for  i = 2,3,...,n,  and  , 0,
i

i
l

G
=

=ξ
ξ

  for  i = 1,2,...,n−1 (21) 

The function Gi may be written in the form 
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 ( ) ( ) ( ) ( )0 1
, , ,

i i i
G G G Hξ ζ ξ ζ ξ ζ ξ ζ= + −  (22) 

where ( )0
,

i
G ξ ζ  is a general solution of the homogeneous equation: 

 ( ), 0,
i i
G ξ ζ  = L%   i = 1,2,…,n (23) 

and ( ) ( )1
,

i
G Hξ ζ ξ ζ−  is a particular solution of equation (20). It may be proved 

that the functions ( ) ( )1 1
,

i i
G Gξ ζ ξ ζ= −  are solutions of equation (23) which satisfy 

the following conditions: 

 1
0,iG

ξ ζ=
=     

( )

1
1

i

i

dG

d A
ξ ζ

ξ ζ
=

=   (24) 

The general solution ( )V ξ  of the differential equation ( ) 0V ξ  = L%  will be 

determined assuming that function ( )
i

A ξ  is expressed as (the index i is omitted) 

 
0

( )
!

rr

r

a
A

r
ξ ξ

∞

=

=∑  (25) 

The function ( )V ξ  is searched with the use of the power series method 

 
0

( )
!

rr

r

V
r

υ
ξ ξ

∞

=

=∑  (26) 

Substituting functions A(ξ) and V(ξ) into equation (23), one obtains: 

 
1

2

1 1

0 0

1
0,

r r

j r j j r j

j j

r r
a a

j j

+

+ + − −

= =

+   
+Ω =   

   
∑ ∑υ υ   r = 0,1,2,... (27) 

Finally, one obtains the following formula as a result of equation (27): 

 2

2 1 1

0 0 0

11
,

r r

r j r j j r j

j j

r r
a a

j ja
υ υ υ
+ + + − −

= =

 +   −
= +Ω    

     
∑ ∑   r = 0,1,2,... (28) 

As each of coefficients 
r
υ  is a combination of coefficients υ0 and υ1, the function U 

may be written in the form 

 ( ) 0 1
( ) ( )V P Qξ υ ξ υ ξ= +  (29) 

where: ( )
0

,

r

r

r

P pξ ξ
∞

=

=∑  ( )
0

.

r

r

r

Q qξ ξ
∞

=

=∑  
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Taking into account the conditions (24) in equation (22), one obtains: 

 ( ) ( ) ( ) ( )1,0 0 ,u Q w Aζ ζ ζ ζ ζ= − ,  ( ) ( ) ( ) ( )1,1 0 ,u P w Aζ ζ ζ ζ ζ=  (30) 

where ( ) ( ) ( ) ( ) ( )0
,w P Q Q Pξ ζ ξ ζ ξ ζ′ ′= − . Finally, the function ( ),G ξ ζ  can be 

written in the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,0 0,1, ,G u P u Q R H Wξ ζ ζ ξ ζ ξ ξ ζ ξ ζ ζ= + + −  (31) 

where: ( ) ( ) ( )0
1 ,W w Aζ ζ ζ ζ= −   and  ( ) ( ) ( ) ( ) ( ), .R P Q P Qξ ζ ξ ζ ζ ξ= −  

The coefficients u0,0(ζ) and u0,1(ζ) are determined with the use of boundary condi-

tions. For example, the Green’s functions for clamped-free and free-free rods are 

the following: 

• a clamped-free rod (
0

0,G
ξ =

=  , 0
l

G ξ
ξ =
= ) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0
, , ,G W w l Q Q l R H′=  + −  ξ ζ ζ ζ ξ ξ ζ ξ ζ  (32) 

• a free-free rod (
0

, 0,G ξ
ξ =
=  , 0

l
G ξ

ξ =
= ) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0
, , ,G W w l P P l R H′=  + −  ξ ζ ζ ζ ξ ξ ζ ξ ζ  (33) 

5. Numerical example 

Let us consider a rod consisting of two segments. First of them is a prismatic 

rod with the length l1 and the cross-section area of the second one (with length l2) 

is expressed as A2(ξ) = (ξ +
 1)

4
. The rod is clamped at the end ξ = 0 and free at 

ξ = L. 

The frequency equation (19) for this rod is as follows 

[ ] 2 2 2 2

1 1 1 1 2 2 2 2 1 2 2 2 2
( , ) (0,0) 1 ( ) ( , ) ( ) ( ,0) (0, ) 0G l l G G l l G l G lµ η µη + + Ω −Λ − Ω −Λ =   

  (34) 

where the function ( )2
,G ξ ζ  is given by formula (33) for i = 2 and ( )1

,G ξ ζ  has 

the form 

 ( ) ( ) ( ) ( )1

1 1
, cos sin cos sinG l Hξ ζ ζ ξ ξ ζ ξ ζ

−= −Ω  Ω − Ω Ω− Ω − −    (35) 

The calculations are performed for various values of the parameter α which 

characterizes the non-uniformity of the second segment of the rod. 
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Fig. 2. Frequency parameter values Ωi for the first four modes of vibration 

as a function of Eω ρΛ = for a clamped-free rod 

with a cross-section area ( ) ( )
4

2
1A ξ αξ= +  
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A discrete spring-mass element is attached at the free end of the rod. The free 

vibration frequency of the isolated spring-mass system is determined by the 

parameter .Eω ρΛ =  Natural frequencies of the free longitudinal vibration 
i
Ω  

(i = 1,..,4) are numerically calculated as functions of the parameter Λ and they are 

presented in Figure 2. The results show that an increase of the frequency of the 

isolated spring-mass system causes an increase of free vibration frequencies of the 

compound system. It is interesting that in case of second and higher modes there 

are such Λ, for which the values of the Ωi do not depend on the non-uniformity 

parameter α (the intersection points of the curves on Figures 2(a)-(d)). 

6. Conclusions 

The solution for free longitudinal vibrations of a rod consisting of n non-

uniform segments was obtained with the use of the power series method and the 

Green’s function properties. The presented numerical example has shown the influ- 

ence of the parameter characterizing the attached discrete element on free vibration 

frequencies of the system. Although the presented numerical example deals with 

non-uniform rods consisting of two segments, the solution can be used for a vibra-

tion analysis of rods consisting of an arbitrary number of segments. 
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