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Abstract. The paper is devoted to the problem of a choice between various regression esti-

mators in real world applications. We emphasise the role of  cross-validation techniques 

when doing such a choice in actual usage, especially in the situations where theoretical 

assumption about  considered problem  are difficult to verify and the aim of the model buil-

ding is the prediction of future values of the response variable. 

1. Introduction 

When one wants to apply the linear regression model to a set of data, there are 

various methods one could use to estimate the regression coefficients. The most 

popular one is called the method of least squares (LS). This method, however, has 

its well-known weaknesses, see e.g. Berger [1], Grzybowski [4]. Consequently 

there are many situations where we prefer to use alternative regression methods. 

The decision theory help us here. We are presented with various regression estima-

tors such as Least-Absolute-Deviations regression (LAD), M-(Huber) regression,  

ridge regression or, incorporating prior information, Bayes, robust Bayes, minimax 

estimators, to mention at least the most popular ones -  see e.g. [1,4]. However, the 

optimal performance of the estimators depends on the problem formulation and 

various assumptions about the model. In actual usage it is often difficult to decide 

what description of the problem is most appropriate, and consequently, which 

estimator is most suitable. In this paper we focus on such situations and emphasise 

the role of cross-validation simulations in choosing the estimator when the predic-

tion is the main purpose of the model building. 

2. Problem formulation 

Considered models have the usual linear form: Y = Xβ + Z, where Y is an 

n-dimensional vector of observations of the dependent variable, X is a given non-

stochastic (n x k) matrix with the rank k, β is a k-dimensional vector of unknown 

regression coefficients, Z is an n-dimensional vector of random disturbances. 

To illustrate  the usage of the cross validation techniques for the choice of the 

estimator we examine two data sets. One  is connected with the model of monthly 
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rental price built on the base of measurements made for 36 apartments and is taken 

from the book Frees [3]. The second set of data was gathered  during the forming 

and rolling process in  Częstochowa steel works. The data set was obtained for the 

conventional method of rolling and consists of 50 records. 

In our paper we use only two estimators LS and LAD to present the idea of the 

actual data based choice of the method of estimation. However, it is obvious that it 

may be applied to an arbitrary number of estimators. The formulae for the estima-

tors may be found e.g. in Birkes, Dodge [2]. 

3. Cross-validation techniques 

This section provides an introduction to a variety of CV heuristics. In the se-

quel ”to select a model” means ”to select an estimator which lead to a given esti-

mates of the model coefficients”. 

Hold out set CV. ”Hold out set” CV (hereafter referred to as HOS-CV) is perhaps 

the most obvious form of CV. The holdout method is the simplest kind of cross 

validation. The data set is separated into two sets, called the estimation (or tra-

ining) set and the validation (or testing) set. The estimator fits a function using the 

estimation set only. Then on the base of the obtained model the output values are 

predicted for the data in the validation set. The errors it makes are accumulated as 

before to give the mean absolute test set error, which is used to evaluate the model. 

The advantage of this method is that it is usually preferable to the residual method 

and takes no longer to compute. However, its evaluation can have a high variance. 

The evaluation may depend heavily on which data records end up in the training 

set and which end up in the validation set, and thus the evaluation may be signifi-

cantly different depending on how the division is made. 

Multifold CV. HOS-CV is often sufficient when abundant data are available.  

However, when it is not known whether or not the available amount of data is suf-

ficient to ensure proper training and still provide an adequate amount of data for 

testing, it is well known that HOS-CV can be sensitive to user-set parameters that 

determine the size of the validation set (and hence, as well, the size of the training 

set) as well as the choice of split (i.e., a particular distribution of the available 

records into either the training set or the validation set). Let Nt and Nv = N-Nt de- 

note the sizes of the training set and validation set, respectively. Given choice of 

Nv and Nt , one direct method to reduce the sensitivity of HOS-CV on the choice of 

split is to repeat the HOS-CV procedure a number of times and average the results.  

We refer to this method generically as ”multifold” CV. Multifold CV can be 

implemented in several ways. One way is ”Leave-Many-Out” CV (LMO-CV) Note 

that there are C(N, Nv)  ways to select  a validation set of size Nv, where 

 C(k,n) = k!/[k!(n-k)!] (1) 
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gives the number of combinations available by choosing  k things out of n that are 

available. 

Here are three methods of implementing LMO-CV: 

1) ”Exhaustive” LMO-CV (ELMO-CV):  average over all C(N, Nv)  splits. 

2) ”Disjoint set” LMO-CV (DLMO-CV): split the data into [N/Nv] disjoint valida-

tion subsets of size Nv  i.e., take the ”floor” of N/Nv , rounding it down to the 

nearest integer. 

3) ”Monte-Carlo” LMO-CV (MCLMO-CV): select each validation subset by 

drawing Nv records at random without replacement (cf. [Shao 93]). 

ELMO-CV can be prohibitively expensive for even modest amounts of data, as 

C(N,Nv) grows large quickly with N for Nv>1.  DLMO-CV is the implementation 

of multifold CV very commonly used in literature (for instance, it is essentially 

equivalent to an implementation known as ”V-fold CV,” where V = [N/Nv] gives 

the number of disjoint validation sets, or, ”folds”). MCLMO-CV was suggested by 

Shao [7] and has some appealing (and possibly surprising) properties. MCLMO-CV 

is similar to the bootstrap in that a particular estimation set could be generated 

more than once. However, note that MCLMO-CV differs from the conventional 

bootstrap, where training sets are obtained by sampling from the available data at 

random with replacement. Both ELMO-CV and MCLMO-CV average over many 

more validation sets than DLMO-CV, in general, because they generate many 

more splits than does DLMO-CV. 

Leave-One Out CV. All of the multifold methods involve choice of Nv. Setting 

Nv=1 yields the popular and well-studied “Leave-One-Out” CV (LOO-CV). LOO- 

-CV may be considered as a special case of LMO-CV. Perhaps LOO is an appeal-

ing alternative to LMO-CV to many practitioners because: 

• it eliminates the need to select the value of M, 

• it limits the number of splits (to a total of N), and 

• it results in the maximum number of records (i.e., N-1) allotted to each training 

set. 

However, these reasons can be outweighed by the much better performance that 

can result by using LMO-CV, as is discussed e.g. in Plutowski, Sakata, White [6]. 

While CV is generally applicable, it was once considered too expensive to apply 

directly in many practical settings (although this is less of a concern now that 

computation is becoming less expensive).  Although LOO-CV limits the number of 

training subsets to N, the cost of fitting the model to each of the N sets may still be 

prohibitively expensive.  Other properties of the considered techniques one may 

find in Kohavi [5]. 

In our examples we make use of the two most effective cross-validation me- 

thods: LOO-CV and MCLMO-CV. 
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4. Results 

We use now the above described techniques LOO-CV and MCLMO-CV to  

choose better from the LS and LAD estimators in two problems of regression esti-

mation. First one is connected with model of the steel plates properties, the second 

deals with monthly apartment rents. It appeared that in both cases the standard 

assumptions about linear regression models cannot be rejected and the LS estima-

tor may be used. However let us assume that we are not sure what form of the loss 

is appropriate. Thus the comparison is made for two loss functions: the Euclidian  

norm of the difference between the parameter β end its estimate b given as 

 L1(β,b) = )()( ββ −− bb
T  (2) 

and for the quadratic loss function given by 

 L2(β,b) = )()( β−β− bb
T  (3) 

Problem 1 

The aim of the example is to compare the aforementioned methods as tools for  

estimation the regression parameter in models for mechanical properties of steel 

plates. We want to model so called the yield stress Re as a function of some tech-

nological properties of the rolling process and the chemical composition of the 

plate. 

After preliminary studies we set up significant explanatory variables and assume 

the following form of the model: 

 Re = β1 + β2Mn + β3Si + β4Ni + β5Al + β6Th + β7ERT + Z (4) 

In the above formula  Z stands for random disturbance, symbols ERT and Th stand 

for the end of rolling temperature and thickness, respectively. The remaining are 

chemical symbols. Our analysis is based on the data gathered in real terms during 

the forming and conventional rolling process. The data set consists of 50 records 

which can be found in Grzybowski [4]. 

To compare the LS and LAD estimators of the parameter β = (β1,….,β7)
T
 we first 

use the LOO-CV technique.  So the  presented results are an average loss  obtained 

for 50 problems. Next the MCLMO-CV method with Nv = 20 is adopted. The ran-

dom split of the data set was generated a hundred  times. Table 1 shows the result 

obtained in this case. Apart from the mean values of loss functions L2 and L1 we 

also  compute the value of the statistic 
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to test the hypothesis that the mean values of loss (L1 or L2) for given estimators  

are actually equal. Here the symbols ,
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 stand for 

the loss Li, i = 1,2, and its standard deviation, computed for  estimator LAD or LS, 

respectively, n  is a number of predictions made during the simulations. The 

p-value presented in the table is an observed significance level - the probability, 

assuming the null hypothesis is true, of observing a value of the test statistic that is 

at least as contradictory to the null hypothesis and as supportive of the alternative 

hypothesis, as the one we have computed. 

Table 1. The comparison of LS and LAD estimators for the steel plate properties model 

CV method 

LS estimator LAD estimator U statistic p-value 

L1 L2 L1 L2 L1 L2 L1 L2 

LOO-CV 22.18 921.99 19.38 687.97 –3.198 –27.24 0.0007 0 

MCLMO-CV 25.4 1473.6 19.94 751.2 –35.39 –401.3 0 0 

We see that both methods of cross validation show that  the LAD estimator is  

significantly better for estimating regression parameter for this model - no matter 

what the loss function is under consideration. 

Problem 2 

In this example we analyse data connected with monthly apartment rental prices 

downtown Medison, USA. The data may be found in the book of Frees [3]. There 

the following model for apartment monthly rent per square meter (RpM) is propo-

sed: 

 RpM = β1 + β2Dis + β3Size + β4TB + Z (6) 

where Dis is the distance from the city centre, in kilometres, Size is an apart-

ment size measured in square feet and, finally, TB is the type of apartment: 1 if 

a two bedroom and 0 if a one bedroom, Z is the random disturbance. Table 2 pre-

sents the results obtained for the model. 

Table 2. The comparison of LS and LAD estimators for the  model of monthly rental prices 

CV method 

LS estimator LAD estimator U statistic p-value 

L1 L2 L1 L2 L1 L2 L1 L2 

LOO-CV 0.92 1.25 1.12 1.65 1.06 1.26 0.14 0.1 

MCLMO-CV 0.93 1.3 0.98 1.41 1.43 1.73 0.076 0.042 
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This time both CV methods indicate the better performance of the model based on 

LS estimates. Thus the estimator should be suggested for use, at least in the case 

where the prediction is the aim of model building. 

5. Final remarks 

In the paper we present an example of the practical usage of the cross valida-

tion techniques in order to choose regression estimator which is most suitable for 

a given data set. However we should stress that the criteria of performance of the 

compared  estimators are based on the prediction error  and thus if the principal 

aim of the estimation is not the prediction, the results may be misleading. Such 

a situation occurs e.g. when we want to investigate the relationship between re-

sponse and some of explanatory variables rather than to predict future values of the 

response. It is well known from decision theory that the prediction and estimation 

task are usually not exchangeable in that sense, that the estimators better for one 

task does not have to be better for another, see e.g. Grzybowski [4]. 
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