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ON SYMMETRIC POISSON STRUCTURE AND LIE BRACKET 

IN LINEAR ALGEBRES 

Jerzy Grochulski 

Institute of Mathematics and Computer Science, Czestochowa University of Technology 

Abstract. In the paper the symmetric Poisson structure on linear has been applied. A con-

nection of this structure with Lie bracket has been detined. 

Let V be a linear algebra over R and let 

VVA →×V :  

be a skew - symmetric 2-linear mapping satisfying the conditions 

 ( ) ( ) ( )βαβγβαγβα ,,, AAA +=⋅  (i) 

 ( )( ) ( )( ) ( )( ) 0,,,,,, =++ αγββαγγβα AAAAAA  (ii) 

for any .,, V∈γβα  

The mapping A is said to be a Poisson structure on V and the pair (V, A) we will 

called a Poisson linear algebra. 

From definition it follows that for any V∈α the mapping 

( ) VVAD →⋅= :,: α
α

 

is a derivation of the algebra V. 

It is easily to prove. 

Proposition 1. The set D(V) of all derivations 
α

D  of V is a linear space over R. 

Moreover D(V) is a Lie algebra with the Lie bracket given by 

 [ ] αββαβα DDDDDD ⋅−⋅=,  (2) 

for any ( )VDDD ∈βα , . 

Proposition 2. For any V∈βα ,  

 [ ] ( )αββα ,

,

A
DDD =  (3) 
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An element V∈α  is said to be a Casimir element of V with respect to A, if 

( ) 0, =βαA  for any .V∈β  The set of all Casimir element of V with respect to 

A we denote by A

C
V . Evidently the pair ( )AV ,  is a Lie algebra and A

C
V  is its ideal. 

Now let VVT →:  be a mapping satisfying the condition 

 ( )( ) ( )( )βαβα TATA ,, −=  (4) 

for any ., V∈βα  

Proposition 3. A mapping VVT →:  satisfying the condition (4) has the follo-

wing properties: 

( ) ( ) ( ) γβαβα ++=+ TTT                                       (i) 

( ) ( ) δαα +=⋅ xTxT                                           (ii) 

for any V∈βα , and ,

A

C
Vx∈  where γ and δ are some elements of .

A

C
V  

Proof. For any V∈βα ,  by (4) we have. 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )γβγα

γβγαγβαγβα

,,

,,,,

TATA

TATATATA

+=

=−−=+−=+

 

Hence 

( ) ( ) ( )( ) 0, =−−+ γβαβα TTTA  

which gives 

( ) ( ) ( ) γβαβα ++=+ TTT  

for some .

A

C
V∈γ  

Similarly we have 

( )( ) ( )( ) ( )( )
( )( ) ( )( )βαβα

βαβαβα

,,

,,,

xTATxA

TxATxAxTA

==

=−=−=

 

Hence 

( ) ( )( ) 0,, =− βαα xTxTA  

which gives ( ) ( ) δαα += xTxT  for any A

C
VxV ∈∈   ,α  where δ  is some element 

of .

A

C
V  
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One can easily top prove 

Proposition 4. A mapping VVT →:  satisfying the condition (4) satisfies also the 

conditions. 

 ( )( ) ( ) ( )( )βαβα nnn

TATA ,1, −=  (i) 

 ( ) ( ) ( ) γβαβα ++=+
nnn

TTT  (ii) 

 ( ) ( ) δαα +=
nn

xTxT  (iii) 

for any A

C
VxV ∈∈  ,,βα  and ,Nn∈ where γ and δ are some elements of .

A

C
V  

Proposition 5. If A

C
V∈α  then ( ) .

A

C
VT ∈α  In consequence A

C
V  is a T-invariant 

linear subspace of the linear space V. 

Proof.  Let ,

A

C
V∈α  then for any ( ) ,0,  =∈ βαβ AV  for any .V∈β  Therefore 

( ) .

A

C
VT ∈α  

Let us put 

 ( ) ( )( )βαβα ,, TAS =  (5) 

for any ., V∈βα  

Evidently the formula (5) defines a 2-linear mapping .: VVVS →×  

Lemma 6. The mapping S defined by (5) is symmetric one. 

Prof. From (4) and (5) it follows 

( ) ( )( ) ( )( ) ( )( ) ( )αβαββαβαβα ,,,,, STATATAS ==−==  

for any V, ∈βα . 

Now we will prove 

Proposition 7. The mapping S defined by (5) satisfies the identities 

 ( )( ) ( )( )βαβα TsTS ,, −=  (i) 

 ( ) ( ) ( )γαβγβαγβα ,,, SSS +=⋅  (ii) 

 ( )( )( ) ( )( )( ) ( )( )( ) 0,,,,,, =++ αγββαγγβα TSSTSSTSS  (iii) 

for any .,, V∈γβα  
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Proof. (i). Using (4) and (5) we get 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )βααββαβα ,,,, TSTTATTTATS −=−==  

for any ., V∈βα  

(ii) From (4) and (5) as well as from definition of A we get 

                
( ) ( )( )
( )( ) ( )( ) ( ) ( )γαβγβαγαβγβα

γβαγβα

,,,,

,

SSTATA

TAS

+=−−=

=⋅−=⋅

 

for any .,, V∈γβα  

(iii) Analogically we get 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) 0,,,,

,,,,,,

,,,,

,,,,

=++

+=−−

+−=+

++

αγββαγ

γβααγββαγ

γβααγβ

βαγγβα

TSSTSS

TSSTTASTTAS

TTASTTTAA

TTTAATTTAA

 

for any .,, V∈γβα  

So, we may accept 

Def. 1.  A mapping S, defined by (5) is said to be a symmetric Poisson structure on 

a linear algebra V over R. 

From proposition 5 (ii) it follows that for any V∈α  the mapping 

 ( ) VVS →⋅= :,αδ
α

 (6) 

is a derivation of the algebra V. 

Proposition 8. The set ( )V∆  of all derivations 
α

δ  of ,V∈α  is a linear space 

over R. Moreover ( )V∆  is a Lie algebra with a Lie bracket given by 

[ ] αββαβα δδδδδδ ⋅−⋅=,  

for any ( )., V∆∈βα δδ  

From (1), (5) and (6) it follows the relation 

D−=
α

δ  

for any V∈α and consequently [ ] ( )( )βαβα δδδ
,

,

TS
T =⋅  for any ., V∈βα  

Def. 2.  An element V∈α  is said to be a Casimir element of V with respect to S, if 

( ) 0, =βαS  for any .V∈β  
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The set of all Casimir elements of V with respect to S we denote by .

S

C
V  

We shall prove. 

Lemma 9. If A

C
V∈α  then ( ) .

S

C
VT ∈α  

Proof. Let .

A

C
V∈α  By Proposition 5 ( ) .

S

C
VT ∈α  Hence by (5) 

( ) ( )( ) 0,, == βαβα TAS  

for any .V∈β  Therefore .

S

C
V∈α  

Lemma 10. S

C
V∈α  in and only if ( ) .

A

C
VT ∈α  

Proof. It follows from ( ) ( )( )βαβα ,, TAS =  for .V∈β  

Lemma 11. If S

C
V∈α  then ( ) .

S

C
VT ∈α  

Proof. Let S

C
V∈α  then ( ) 0, =βαS  for any .V∈β  Hence ( )( )=βα TTS ,  

( )( ) 0, =−= βαTS  for any .V∈β  Therefore ( ) .

S

C
VT ∈α  

Corollary 12. 
S

C
V  is T-invariant subspace of the linear space V. 

Evidently, if VVT →:  is onto then .

A

C

S

C
VV =  In general case there is the inclusion 

.

A

C

S

C
VV ⊃  

Let us observe also that (V, S) is an algebra, which we shall call a symmetric 

Lie algebra. Of course S

C
V  is an ideal of this algebra. 

Let VVT →:  be a mapping satisfying the condition 

( )( ) ( )( )βαβα ,, ATA −=  

for any V, ∈βα . This mapping induces the mapping 

 ( ) ( )VDVDT →:
*

 (7) 

given by 

 ( ) ( )αα T
DDT =

*
 (8) 

for any ( ).VDD ∈
α

 

Lemma 13. The mapping 
*
T  Defined by (8) satisfies the condition 

 [ ] [ ]βαβα DTDDDT
**

,, −=  (9) 

for any ( )., VDDD ∈βα  
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Proof. Using from (5) we get for any ( )., VDDD ∈βα  

[ ] ( )[ ] ( )( ) ( )( )

( )[ ] [ ]βαβα

αβαββαβα

DTDDD

DDDDDDT

T

TATAT

*

,,*

,,

,,

−=−=

=−===

 

Now let us put 

( )[ ] [ ]βαβα DDTDD ,,

*0
=                                       (10) 

for any ( )., VDDD ∈βα  

It is easily to observe that the formula (10) defines a 2-linear mapping. 

( )[ ] ( ) ( ) ( )VDVDVD →×⋅⋅ :,  

Lemma 14. The mapping ( )[ ]⋅⋅,  defined by (10) is a symmetric one. 

Proof. By (9) and (10) we have 

( )[ ] [ ] [ ] [ ] ( )[ ]αβαββαβαβα DDDDTDTDDDTBD ,,,,,

***
==−==  

for any ( )., VDDD ∈βα  

Proposition 15. The mapping ( )[ ]⋅⋅,  defined by (10) the following properties 

 ( )[ ] ( )[ ]βαβα DTDDDT
**

,, −=  (i) 

 ( )[ ]( )[ ] ( )[ ]( )[ ] ( )[ ]( )[ ] 0,,,,,,
***

=++ αγββαγγβα DDDTDDDTDDDT  (ii) 

for any ( )., VDDD ∈βα  

Proof. (i) From (9) and (10) we get for any ( )VDDD ∈βα ,  

( )[ ] [ ] [ ] [ ]βααβαβα β D,DTDT,DTDT,DTDT,D
******

−=−==  

(ii) Now for any ( )VDDDD ∈γβα ,,  we get  

[ ][ ] [ ][ ] [ ][ ]
[ ]( )[ ] [ ]( )[ ] [ ]( )[ ]
( )[ ]( )[ ] ( )[ ]( )[ ] ( )[ ]( )[ ] 0,,,,,,

,,,,,,

,,,,,,

***

******

*********

=++=

=−−−=

=++

αγββαγγβα

αγββαγγβα

αγββαγγβα

DDDTDDDTDDDT

DDTDTDDTDTDDTDT

DTBTDTDTBTDTDTBTDT
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So, we shall accept 

Def. 3. The mapping ( )[ ]⋅⋅,  defined by (10) is said to be a symmetric Lie bracket. 

It is easily to prove. 

Proposition 16. The mapping ( ) ( ) ( )VDVDVDT →×:
*

 defined by (8) is a linear 

one over .

S

C
V  

Let (V, A) be a Poisson linear algebra and let D(V) denotes the Lie algebra of 

all derivations of V defined by (1). Now, let 

( ) ( )VDVD →:ψ  

be a mapping satisfying the condition 

 ( )[ ] ( )[ ]βαβα ψψ DDDD −=,  (11) 

for any ( )., VDDD ∈βα  

One can easily prove 

Lemma 17. A mapping ( ) ( )VDVD →:ψ  satisfying the condition (11) is a linear 

one over R. 
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