THE JACOBIANS OF LOWER DEGREES

Grzegorz Biernat

Institute of Mathematics and Computer Science, Czestochowa University of Technology

Abstract

In the present paper we give some relation of the number of zeros of a polynomial mapping in \boldsymbol{C}^{2} with a jacobian of non-maximal degree and the number of branches at infinity of one coordinate of this mapping.

1. Auxiliary facts

Let $l_{\infty}=V\left(T_{0}\right)$ denote a line at infinity in the projective complex space \boldsymbol{P}^{2} (with homogeneous coordinates $T_{0}: T_{1}: T_{2}$). Further it will be called infinity. If $a \in l_{\infty}$ then by $\tilde{a} \in \boldsymbol{C}^{2}$ we denote the canonical image of the point a in affine part $\boldsymbol{P}^{2} \backslash V\left(T_{1}\right) \cong \boldsymbol{C}^{2}$. For a polynomial h of two variables, \tilde{h} signifies a suitable dehomogenization of the homogenization of the polynomial h. So, we have $\tilde{h}\left(X_{1}, X_{2}\right)=X_{1}^{\operatorname{deg} h} h\left(1 / X_{1}, X_{2} / X_{1}\right)$.

Let f_{1}, f_{2} and g be polynomials of two variables and let C_{1}, C_{2} be the closures, respectively, of the curves $V\left(f_{1}\right), V\left(f_{2}\right)$ in the space \boldsymbol{P}^{2}. Assume further that polynomials f_{1} and f_{2} are different from constants and write $n_{1}=\operatorname{deg} f_{1}$, $n_{2}=\operatorname{deg} f_{2}$. We denote by $J_{f}=\operatorname{Jac}\left(f_{1}, f_{2}\right)$ (respectively, $\left.J_{\tilde{f}}=\operatorname{Jac}\left(\tilde{f}_{1}, \tilde{f}_{2}\right)\right)$ the jacobian of the mapping $f=\left(f_{1}, f_{2}\right)$ (respectively, $\widetilde{f}=\left(\tilde{f}_{1}, \widetilde{f}_{2}\right)$).

Fact 1. If $\operatorname{deg} J_{f}<\operatorname{deg} f_{1}+\operatorname{deg} f_{2}-2$, then $\left(C_{1} \cup C_{2}\right) \cap l_{\infty}=\left(C_{1} \cap C_{2}\right) \cap l_{\infty}$.
Proof. Let f_{1}^{+}, f_{2}^{+}be the leading forms of the polynomials f_{1}, f_{2}, respectively. Put $f^{+}=\left(f_{1}^{+}, f_{2}^{+}\right)$. Since the degree of the jacobian J_{f} is not maximal, then the jacobian $J_{f^{+}}=0$. It means that the homogeneous polynomials f_{1}^{+}, f_{2}^{+}are algebraically independent. Thus, there is a polynomial h of two complex variables of positive degree without constant term such that $h \circ f^{+}=0$. Let

$$
h\left(Y_{1}, Y_{2}\right)=\sum_{i, j} c_{i j} Y_{1}^{\alpha_{i}} Y_{2}^{\beta_{j}}, \text { where } c_{i j} \neq 0, \alpha_{i}+\beta_{j} \geq 1
$$

For an arbitrary point $(a, b) \in \boldsymbol{C}^{2} \backslash\{(0,0)\}$ we have

$$
\begin{equation*}
h\left(t^{n_{1}} f_{1}^{+}(a, b), t^{n_{2}} f_{2}^{+}(a, b)\right)=0 \text { for } t \in \boldsymbol{C} \tag{1}
\end{equation*}
$$

If the point $(0: a: b) \in C_{1} \cap l_{\infty}$, then $f_{1}^{+}(a, b)=0$ and (1) reduces to identity

$$
\sum_{j} d_{j}\left(f_{2}^{+}(a, b)\right)^{\beta_{j}} t^{\beta_{j} n_{2}}=0, \text { where } d_{j} \neq 0, \beta_{j} \geq 1, t \in \boldsymbol{C}
$$

It means that $f_{2}^{+}(a, b)=0$ and the point $(0: a: b) \in C_{2} \cap l_{\infty}$. Analogously, if $(0: a: b) \in C_{2} \cap l_{\infty}$, then $(0: a: b) \in C_{1} \cap l_{\infty}$. This ends the proof.

Assume further that the polynomials f_{1} and f_{2} have not common factors of positive degrees and the polynomial f_{1} has not irreducible multiples factors. Then the canonical image \widetilde{a} of a point $a \in\left(C_{1} \cap C_{2}\right) \cap l_{\infty}$ is an isolated zero of the mapping \tilde{f} and the germ $\left(\tilde{f}_{1}\right)_{\tilde{a}}$ of the function \tilde{f}_{1} in the point \widetilde{a} has reduced decomposition [2]. Let

$$
\begin{equation*}
\left(\tilde{f}_{1}\right)_{\widetilde{a}}=h_{1} \ldots h_{k} \tag{2}
\end{equation*}
$$

be suitable decomposition of the germ $\left(\tilde{f}_{1}\right)_{\bar{a}}$ into irreducible single factors in the ring of the germs of holomorphic functions in the point \widetilde{a}. Write

$$
\mu_{i}=\operatorname{ord}_{\tilde{a}} h_{i} \text { and } \kappa_{i}=\operatorname{mult}_{\tilde{a}}\left(h_{i}, f_{2}\right) \text { for } 1 \leq i \leq k
$$

Fact 2. If $\kappa_{i}-n_{2} \mu_{i} \neq 0$ for $1 \leq i \leq k$, then the germ $\left(\widetilde{J}_{f}\right)_{\tilde{a}}$ does not vanish identically on the set of zeros of all factors in the decomposition (2). In particular $J_{f} \neq 0$.

Proof. Assume contrary that for parametrization $\Phi_{i_{0}}(t)=\left(t^{\mu_{i 0}}, \varphi_{i_{0}}(t)\right)$ of zeros of the factor $h_{i_{0}}$ in the decomposition (2) we have $\widetilde{J}_{f}\left(\Phi_{i_{0}}(t)\right)=0$. Then according to the formula (*) in [1] we have

$$
\begin{equation*}
n_{2} \widetilde{f}_{2}\left(\Phi_{i_{0}}(t)\right) \frac{\partial \tilde{f}_{1}}{\partial X_{2}}\left(\Phi_{i_{0}}(t)\right)+t^{\mu_{0}} J_{\widetilde{f}}\left(\Phi_{i_{0}}(t)\right)=0 \tag{3}
\end{equation*}
$$

From another hand we have also

$$
\begin{equation*}
\left(\widetilde{f}_{2}\left(\Phi_{i_{0}}(t)\right)\right)^{\prime} \frac{\partial \tilde{f}_{1}}{\partial X_{2}}\left(\Phi_{i_{0}}(t)\right)+\left(t^{\mu_{0}}\right)^{\prime} J_{\tilde{f}}\left(\Phi_{i_{0}}(t)\right)=0 \tag{4}
\end{equation*}
$$

The equalities (3) and (4) have not zero solution, so

$$
n_{2} \tilde{f}_{2}\left(\Phi_{i_{0}}(t)\right)\left(t^{\mu_{i_{0}}}\right)^{\prime}-t^{\mu_{i 0}}\left(\widetilde{f}_{2}\left(\Phi_{i_{0}}(t)\right)\right)^{\prime}=0
$$

and

$$
\frac{\left(\tilde{f}_{2}\left(\Phi_{i_{0}}(t)\right)\right)^{\prime}}{\tilde{f}_{2}\left(\Phi_{i_{0}}(t)\right)^{\prime}}=\frac{n_{2}\left(t^{\mu_{0}}\right)^{\prime}}{t^{\mu_{0}}}
$$

Simple integration gives $\kappa_{i}=n_{2} \mu_{i}$, which contradicts assumption.

2. Basic fact

Assume that the polynomial f_{1} is irreducible and $\operatorname{deg} J_{f}<\operatorname{deg} f_{1}+\operatorname{deg} f_{2}-2$. Let g_{1} denotes the genus of the curve C_{1} and let a_{1}, \ldots, a_{s} be the zeros at infinity of the mapping f. According to the Fact 1 we infer that these zeros are exactly the points at infinity of the curve C_{1}. In each point \widetilde{a}_{k} we have reduced decomposition

$$
\begin{equation*}
\left(\tilde{f}_{1}\right)_{\widetilde{a}_{k}}=h_{1}^{(k)} \ldots h_{r_{k}}^{(k)} \text { for } 1 \leq k \leq s \tag{5}
\end{equation*}
$$

where r_{k} denotes the number of branches of the curve C_{1} in the point a_{k} at infinity. Write

$$
\mu_{j}^{(k)}=\operatorname{ord}_{\widetilde{a}_{k}} h_{j}^{(k)} \text { and } \kappa_{j}^{(k)}=\operatorname{mult}_{\widetilde{a}_{k}}\left(h_{j}^{(k)}, \widetilde{f}_{2}\right) \text { for } 1 \leq j \leq r_{k}
$$

Fact 3. Let p be the number of zeros of the mapping f and q the number of zeros of the mapping $\left(f_{1}, J_{f}\right)$ with respect of the multiplicity. If $\kappa_{j}^{(k)}-n_{2} \mu_{j}^{(k)} \neq 0$ for $1 \leq k \leq s$ and $1 \leq j \leq r_{k}$, then $p+\sum_{k=1}^{s} r_{k} \leq q+2\left(1-g_{1}\right)$. Moreover the number $p+\sum_{k=1}^{s} r_{k}-q$ is even.

Proof. For every point \widetilde{a}_{k} define non-negative integer

$$
\delta_{k}=\frac{1}{2}\left(M_{k}+r_{k}-1\right)
$$

where M_{k} is the Milnor number of the curve $V\left(\tilde{f}_{1}\right)$ at the point $\widetilde{a}_{k}[3]$. Summing we have

$$
\begin{equation*}
\sum_{k=1}^{s} \delta_{k}=\frac{1}{2} \sum_{k=1}^{s} M_{k}+\frac{1}{2}\left(\sum_{k=1}^{s} r_{k}-s\right) \tag{6}
\end{equation*}
$$

For every function $h_{j}^{(k)}$ from the decomposition (5) denote by $\Phi_{j}^{(k)}(t)=\left(t^{\mu_{j}^{(k)}}, \varphi_{j}^{(k)}(t)\right)$ the parametrization of its zeros. From the formula $\left(^{*}\right)$ in [1] it follows that

$$
\begin{equation*}
\mu_{j}^{(k)} t^{\mu_{j}^{(k)}} \sigma \widetilde{J}_{f}\left(\Phi_{j}^{(k)}(t)\right)=-n_{2} \mu_{j}^{(k)} \widetilde{f}_{2}\left(\Phi_{j}^{(k)}(t)\right) \frac{\partial \widetilde{f}_{1}}{\partial X_{2}}\left(\Phi_{j}^{(k)}(t)\right)-\mu_{j}^{(k)} t^{\mu_{j}^{(k)}} J_{\tilde{f}}\left(\Phi_{j}^{(k)}(t)\right) \tag{7}
\end{equation*}
$$

where $\sigma=n_{1}+n_{2}-2-\operatorname{deg} J_{f} \geq 1$. From another hand we have

$$
\mu_{j}^{(k)} t^{\mu_{j}^{(k)}-1} J_{\tilde{f}}\left(\Phi_{j}^{(k)}(t)\right)=-\left(\widetilde{f}_{2}\left(\Phi_{j}^{(k)}(t)\right)\right)^{\prime} \frac{\partial \widetilde{f}_{1}}{\partial X_{2}}\left(\Phi_{j}^{(k)}(t)\right)
$$

so

$$
\begin{equation*}
\mu_{j}^{(k)} t^{\mu_{j}^{(k)}} J_{\widetilde{f}}\left(\Phi_{j}^{(k)}(t)\right)=-t\left(\widetilde{f}_{2}\left(\Phi_{j}^{(k)}(t)\right)\right)^{\prime} \frac{\partial \widetilde{f}_{1}}{\partial X_{2}}\left(\Phi_{j}^{(k)}(t)\right) \tag{8}
\end{equation*}
$$

From (7) and (8) we have

$$
\mu_{j}^{(k)} t^{\mu_{j}^{(k)} \sigma} \widetilde{J}_{f}\left(\Phi_{j}^{(k)}(t)\right)=\frac{\partial \widetilde{f}_{1}}{\partial X_{2}}\left(\Phi_{j}^{(k)}(t)\right)\left(-n_{2} \mu_{j}^{(k)} \widetilde{f}_{2}\left(\Phi_{j}^{(k)}(t)\right)+t\left(\widetilde{f}_{2}\left(\Phi_{j}^{(k)}(t)\right)\right)^{\prime}\right)
$$

Since $\widetilde{f}_{2}\left(\Phi_{j}^{(k)}(t)\right)=c t^{\kappa_{j}^{(k)}}+$ higher terms, where $c \neq 0$ and $\kappa_{j}^{(k)}-n_{2} \mu_{j}^{(k)} \neq 0$, the order of the second factor on the right side of the above equality is equal $\kappa_{j}^{(k)}$. Taking into account of both sides we have

$$
\mu_{j}^{(k)} \sigma+\operatorname{ord}_{0} \widetilde{J}_{f}\left(\Phi_{j}^{(k)}(t)\right)=\operatorname{ord}_{0} \frac{\partial \widetilde{f}_{1}}{\partial X_{2}}\left(\Phi_{j}^{(k)}(t)\right)+\kappa_{j}^{(k)}
$$

and summing

$$
\sigma \sum_{j=1}^{r_{k}} \mu_{j}^{(k)}+\sum_{j=1}^{r_{k}} \operatorname{ord}_{0} \widetilde{J}_{f}\left(\Phi_{j}^{(k)}(t)\right)=\sum_{j=1}^{r_{k}} \operatorname{ord}_{0} \frac{\partial \tilde{f}_{1}}{\partial X_{2}}\left(\Phi_{j}^{(k)}(t)\right)+\sum_{j=1}^{r_{k}} \kappa_{j}^{(k)}
$$

so

$$
\sigma \operatorname{ord}_{\widetilde{a}_{k}} \widetilde{f}_{1}+\operatorname{mult}_{\tilde{a}_{k}}\left(\widetilde{f}_{1}, \widetilde{J}_{f}\right)=\operatorname{mult}_{\widetilde{a}_{k}}\left(\widetilde{f}_{1}, \frac{\partial \tilde{f}_{1}}{\partial X_{2}}\right)+\operatorname{mult}_{\widetilde{a}_{k}}\left(\widetilde{f}_{1}, \widetilde{f}_{2}\right)
$$

From the Teissier lemma [3] we infer that

$$
\operatorname{mult}_{\widetilde{a}_{k}}\left(\widetilde{f}_{1}, \frac{\partial \tilde{f}_{1}}{\partial X_{2}}\right)=M_{k}+\operatorname{ord}_{\widetilde{a}_{k}} \widetilde{f}_{1}-1
$$

thus

$$
(\sigma-1) \operatorname{ord}_{\widetilde{a}_{k}} \widetilde{f}_{1}+\operatorname{mult}_{\widetilde{a}_{k}}\left(\widetilde{f}_{1}, \widetilde{J}_{f}\right)=M_{k}+\operatorname{mult}_{\widetilde{a}_{k}}\left(\widetilde{f}_{1}, \widetilde{f}_{2}\right)-1, \quad 1 \leq k \leq s
$$

Summing the above equalities over all points at infinity we have

$$
(\sigma-1) n_{1}+\operatorname{mult}_{\infty}\left(f_{1}, J_{f}\right)=\sum_{k=1}^{s} M_{k}+\operatorname{mult}_{\infty}\left(f_{1}, f_{2}\right)-s
$$

By the Bezout theorem

$$
\operatorname{mult}_{\infty}\left(f_{1}, J_{f}\right)=n_{1} \operatorname{deg} J_{f}-q \text { and } \operatorname{mult}_{\infty}\left(f_{1}, f_{2}\right)=n_{1} n_{2}-p
$$

From the above we conclude

$$
\left(n_{1}-3\right) n_{1}=\sum_{k=1}^{s} M_{k}+q-p-s
$$

and

$$
\left(n_{1}-1\right)\left(n_{1}-2\right)=\sum_{k=1}^{s} M_{k}+q-p-s+2
$$

which gives

$$
\begin{equation*}
\frac{1}{2}\left(n_{1}-1\right)\left(n_{1}-2\right)=\frac{1}{2} \sum_{k=1}^{s} M_{k}+\frac{1}{2}(q-p-s)+1 \tag{9}
\end{equation*}
$$

Subtracting (6) from (9) we have

$$
\frac{1}{2}\left(n_{1}-1\right)\left(n_{1}-2\right)-\sum_{k=1}^{s} \delta_{k}=\frac{1}{2}\left(q-p-\sum_{k=1}^{s} r_{k}\right)+1
$$

In the above equality the number on the left hand side is non-negative integer not less than $g_{1}[3]$. Thus

$$
q-p-\sum_{k=1}^{s} r_{k} \geq 2 g_{1}-2
$$

which proves the fact.

References

[1] Biernat G., The residue at infinity and Bezout's theorem, Prace Naukowe IMiI, Częstochowa 2002, 25-27.
[2] Krasiński T., Poziomice wielomianów dwóch zmiennych a hipoteza jakobianowa, Acta Universitatis Lodziensis, Wyd. UŁ, Łódź 1991.
[3] Płoski A., O niezmiennikach osobliwości krzywych analitycznych, Materiały VIII Konferencj Szkoleniowej z Teorii Zagadnień Ekstremalnych, Wyd. UŁ, Łódź 1985, 80-93.

