[1] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Analytical validation of the finite element method model for Laplace equation, Journal of Applied Mathematics and Computational Mechanics, 18(3), 2019, pages 97-106.
|
|
[2] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Analytical and numerical solution of the heat conduction problem in the rod, Journal of Applied Mathematics and Computational Mechanics, 16(4), 2017, pages 79-86.
|
|
[3] |
Jerzy Winczek, Grażyna Rygał, Tomasz Skrzypczak, The model of temporary temperature field during multi-pass arc weld surfacing. Part I: Analitycal description, Journal of Applied Mathematics and Computational Mechanics, 14(2), 2015, pages 123-130.
|
|
[4] |
Jerzy Winczek, Grażyna Rygał, Tomasz Skrzypczak, The model of a temporary temperature field during multi-pass arc weld surfacing. Part II: Example of computations, Journal of Applied Mathematics and Computational Mechanics, 14(3), 2015, pages 141-148.
|
|
[5] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Modeling of thermal contact through gap with the use of Finite Element Method, Journal of Applied Mathematics and Computational Mechanics, 14(4), 2015, pages 145-152.
|
|
[6] |
Ewa Węgrzyn-Skrzypczak,Tomasz Skrzypczak, Mathematical and numerical basis of binary alloy solidification models with substitute thermal capacity. Part I, Journal of Applied Mathematics and Computational Mechanics, 13(2), 2014, pages 135-140.
|
|
[7] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Mathematical and numerical basis of binary alloy solidification models with substitute thermal capacity. Part II, Journal of Applied Mathematics and Computational Mechanics, 13(2), 2014, pages 141-147.
|
|
[8] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Investigation of accuracy of the interface tracking method, Journal of Applied Mathematics and Computational Mechanics, 12(2), 2013, pages 105-110.
|
|
[9] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Numerical model with explicit time integration scheme for tracking interfaces, Journal of Applied Mathematics and Computational Mechanics, 12(2), 2013, pages 111-116.
|
|
[10] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Mathematical model and numerical solution of double diffusive natural convection system, Scientific Research of the Institute of Mathematics and Computer Science, 10(2), 2011, pages 225-229.
|
|
[11] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Mathematical description of discontinuous Galerkin method in the theory of thermoelasticity, Scientific Research of the Institute of Mathematics and Computer Science, 9(2), 2010, pages 235-242.
|
|
[12] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Mathematical and numerical model of 3D natural convection in a cube, Scientific Research of the Institute of Mathematics and Computer Science, 8(1), 2009, pages 185-191.
|
|
[13] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Accuracy of numerical solution of heat diffusion equation, Scientific Research of the Institute of Mathematics and Computer Science, 7(1), 2008, pages 193-198.
|
|
[14] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Modelling of the binary alloys solidification process with constitutional undercooling condition, Scientific Research of the Institute of Mathematics and Computer Science, 6(1), 2007, pages 261-268.
|
|
[15] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Numerical analysis of the solidification process with natural convection of the liquid phase, Scientific Research of the Institute of Mathematics and Computer Science, 5(1), 2006, pages 185-190.
|
|
[16] |
Ewa Węgrzyn-Skrzypczak, Tomasz Skrzypczak, Modelowanie przepływów cieczy z wykorzystaniem metody elementów skończonych, Scientific Research of the Institute of Mathematics and Computer Science, 1(1), 2002, pages 227-233.
|
|