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Abstract. We consider an ill-posed linear homogeneous fourth-order elliptic equation. We
show that the problem is ill-posed in the sense of Hadamard, i.e., the solution does not
depend continuously on the given data. We propose a regularization method via nonlocal
conditions and under some a priori bound assumptions different estimates for the regularized
solution are obtained. Numerical examples for a rectangle domain show the effectiveness of
the new method in providing highly accurate numerical solutions as the noise level tends to
zero.
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1. Introduction

Let Ω = {(x,y) : 0 < x < π, 0 < y < ℓ} . This paper is concerned with the study
of the ill-posedness of homogeneous biharmonic equation

∆
2v = vyyyy(x,y)+2vyyxx(x,y)+ vxxxx(x,y) = 0, (x,y) ∈ Ω, (1)

where v is the elastic displacement, ∆
2v = ∆(∆v).

The paper [1] is the first one where the conditional stability estimate in a rectan-
gular domain was proved for the homogeneous biharmonic equations with different
Cauchy data (see Theorem 7.1 in Section 7). However, they did not present the error
estimates. We consider the model given by [1] in which the boundary conditions are
given on all edges of the domain as follows

v(0,y) = 0, ∆v(0,y) = 0, v(π,y) = 0, ∆v(π,y) = 0, (2)

v(x,0) = f (x),
∂v
∂y

(x,0) = g(x), 0 ≤ x ≤ π, (3)
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∆v(x, ℓ) = h(x),
∂∆v
∂y

(x, ℓ) = l(x), 0 ≤ x ≤ π, (4)

where ℓ > 0 is a real constant and f ,g,h, l ∈ L2(0,π) are known. For easy reading
we denote by (P) the problem (1)-(4). In fact, it can be proven (see, Section 2)
that this problem has a unique solution which does not depend continuously on the
given noisy data, where any small change of the data may cause dramatically large
error in the solution. Well-posed Biharmonic problems are useful in mechanics to
describe some basic equations in plane elasticity. In [2], the equation (1) was used to
describe the stress of a plate in linear elasticity. There have been many results, and
various methods have also been presented from both mathematical and numerical
points of view, such as the motion of fluids [3], free boundary problems [4], and
the problems related to blending surface [5]. For a more elaborate history of the
biharmonic problem and the relation with elasticity, see the survey of Meleshko [6]
and the monograph [7].

In the literature, many numerical methods have been developed for solving the
well-posed biharmonic problem. We present a selective review of the main and the
most recent methods. These methods include: fundamental solutions [8, 9], the iter-
ative solution of finite difference approximation [10], the iterative method of Kozlov
was given in [11], the finite element treatment was used in [12] and finite volume
schemes were used in [13], the method of approximate fundamental solutions in [14]
and the boundary element method in [15].

Our aim is to give a regularization method, based on the idea of replacing two
local boundary conditions with two nonlocal ones from observed boundary data
f (x),g(x),h(x) and l(x). We then propose a semi-discrete finite difference method
to verify the stability of our proposed regularization method. To the best of our
knowledge, the first applications of this idea to the topic of ill-posed biharmonic
equations were done in paper of Benrabah and Boussetila [16]. It should be noticed
that the problem (P) with f (x) = h(x) = 0, has been studied in [17]. For readers
interested in the ill-posedness of elliptical PDEs in parameter estimation, i.e. inverse
problems, or in non-local boundary conditions, one can mention the following recent
papers: [18,19]. The rest of the paper is organized as follows: In Section 2, notations
and some definitions are given, and we also consider the formulation of a solution
of problem (P) and its ill-posed property. In Section 3, the regularization method
will be given. We present numerical experiments in section 4. Finally, conclusions
are given in the last section.

2. Ill-posedness of the problem

Definition 1 We call a function v ∈ C4(Ω) ∩C3(Ω) satisfying equation (1) and
the boundary conditions (2)-(4) a classical solution. 2
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The equation (1) can be written as
(

∂ 2

∂y2 −A
)2

v(x,y) = 0, and it is easy to check

that the operator A = − ∂ 2

∂x2 with D(A) =⊂ L2(0,π), is positive, self-adjoint with

compact resolvent. The eigenvalues λk = k2,(k ∈ N∗)) and the corresponding eigen-

vectors ψk =

√
2
π

sin(kx), k ∈ N∗, which form an orthonormal basis in L2(0,π).

Definition 2 The abstract Gevrey class of functions of order p > 0 and index q,
defined by

Gp,q =

{
ϕ ∈ L2(0,π) : ∥ϕ∥2

p,q =
∞

∑
k=1

e2pkℓ

kq c2
k(ϕ)<+∞

}
p ≥ 0, q ∈ R, (5)

where ck(ϕ) = ⟨ϕ,ψk⟩L2(0,π) =
∫

π

0
ϕ(x)ψk(x)dx =

√
2
π

∫
π

0
ϕ(x)sin(kx)dx is the

Fourier coefficient of the function ϕ. 2

The norm in Gp,q and L2(0,π) will be denoted respectively by ∥.∥p,q and ∥.∥ . For
simplicity, we will analyze our problem with the simplest choice l(x) = 0. The gen-
eralization of the following convergence analysis to the case l(x) ̸= 0 requires some
nontrivial extra efforts since the solution has a different expression.
Let Edata be the set of exact data, i.e., Edata = { f ,g,h} and we also denote the mea-
sured data by Eδ

data =
{

f δ ,gδ ,hδ

}
. The solution to problem (P) can be represented

in the form of an expansion in the orthogonal series

v(x,y) =
∞

∑
k=1

ψk(x)wk(y) =

√
2
π

∞

∑
k=1

wk(y)sin(kx), (6)

By substituting (6) in the equation (1) and in the boundary conditions (2)-(4), we
obtain the solution

v(x,y) =
∞

∑
k=1

{(
1

2k2 sinh(ky)sinh(kℓ)+
y

2k
sinh(k(y− ℓ))

)
ck(h)

+ cosh(ky)ck( f )+
sinh(ky)

k
ck(g)

}
ψk(x) (7)

of the problem (P); where ck( f ),ck(g) and ck(h) are the Fourier coefficients of the
expansion according to the orthonormal basis {ψk(x)}∞

k=1 of the functions f ,g and
h respectively. By observing (7), one may recognize that the growth of v(x,y) is of
exponential order. Thus, the solution will be destroyed at high frequencies. Formally,
we have the following example regarding the ill-posed structure of the problem (P).

For example, if we take g(x) = h(x) = 0, and f (x) =

√
2
π

sin(kx)
k

, then the solution

is given by v(x,y) =

√
2
π

cosh(ky)
sin(kx)

k
,
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Since lim
k→∞

∥ f∥2
L2(0,π) = lim

k→∞

∫
π

0

∣∣∣∣∣
√

2
π

sin(kx)
k

∣∣∣∣∣
2

dx = 0, and for fixed y > 0, we have

lim
k→∞

∥v(.,y)∥2
L2(0,π) = lim

k→∞

cosh2(ky)
k2 =+∞.

Consequently, the considered problem (P) is ill-posed in the sense of Hadamard [20]
in the L2(0,π)-norm.

3. Regularization method

As previously mentioned, the ill-posedness of the investigated problem is mainly
caused by the exponential growth of the hyperbolic functions cosh(ky) and sinh(ky).
Thus, to obtain a stable approximation of the original problem, one must control the
growth of the component eky as k → ∞. In this direction, the idea arising here is
to replace the boundary condition v(x,0) = f (x) in (3) and the boundary condition
∆v(x, ℓ) = h(x) in (4) with

Θ
α
v ( f δ ) = v(x,0)+αv(x, ℓ) = f δ (x), (8)

Θ
α
∆v(h

δ ) = ∆v(x, ℓ)+α∆v(x,0) = hδ (x), (9)

respectively, where α > 0 is the regularization parameter.
We obtain a nonlocal problem

(
Pδ

α

)
with the new nonlocal conditions given by (8)

and (9) where the measured data Eδ
data ∈

(
L2(0,π)

)3
, satisfies

∥ f δ − f∥L2(0,π) ≤ δ , ∥gδ −g∥L2(0,π) ≤ δ , ∥hδ −h∥L2(0,π) ≤ δ , (10)

in which the constant δ > 0 is the noise level. The following technical lemma play
the key role in our analysis and calculations.

Lemma 1 ( [16]) Let [1,+∞[∋ z 7→ Rr(z) =
1

αzr +2e−zℓ , where α > 0, ℓ > 0, and

r > 1. Then one has

Rr(z)≤
1
α

(
ℓ1

ln(ℓ2(1/α))

)r

, (11)

where ℓ1 = rℓ, ℓ2 = 2(ℓ)r/r, and 0 < α < 2ℓr/(re).
If r = 1, the function z 7→ R1(z) can be also estimated as follow

R1(z)≤
ℓ

α ln(2ℓ/α)
, (12)

for 0 < α < 2ℓ/e. 2
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For k ≥ 1, we introduce the functions

coshα(k) = (1+α cosh(kℓ))≤ cosh2
α(k), (13)

Vα(k,y) =
sinh(ky)
coshα(k)

≤ 1
α
, Wα(k,y) =

cosh(ky)
coshα(k)

≤ 1
α
. (14)

Since k ≥ 1, by using inequalities sinh(kℓ) ≤ cosh(kℓ),
1
2

ekℓ ≤ cosh(kℓ) ≤ ekℓ, we
get

Vα(k,y)
kr ≤ Wα(k,y))

kr ≤ 2
αkr +2kre−ky ≤ 2

αkr +2e−kℓ = 2Rr(k). (15)

Using the same method as in Section 2, the solution of the regularized problem(
Pδ

α

)
is given by

vδ
α(x,y) =

∞

∑
k=1

{
cosh(ky)
coshα(k)

ck( f δ )+
sinh(ky)+α sinh(k (y− ℓ))

k coshα(k)
ck(gδ )+(

sinh(kℓ) [α sinh(k (y− ℓ))+ sinh(ky)]
2k2 cosh2

α(k)
+

ysinh(k(y− ℓ))

2k coshα(k)

)
ck(hδ )

}
ψk(x)

(16)

where coshα(k) is given by (13).
We are now ready to show that the regularized solution vδ

α converges to the exact
solution v as α goes to zero.

Lemma 2 Suppose that vα is the solution of (Pα) with exact data Edata ∈
(
L2(0,π)

)3
,

and vδ
α is the solution of problem (Pδ

α), with noisy data Eδ
data ∈

(
L2(0,π)

)3
. Then

the estimate∥∥∥vδ
α(.,y)− vα(.,y)

∥∥∥2

L2(0,π)
≤ 8δ

2
κ1(α)+

(
δ 2

α2

)
κ2(α)+

(
δ 2

α4

)
κ3(α), (17)

holds, where κ1(α) =
ℓ2

ln2 (2ℓ
α

) , κ2 = 1+8κ1(α)+3κ
2
1 (α), and κ3 = 12κ

2
1 (α). 2

PROOF Using the Cauchy-Schwartz inequality

(
3

∑
i=1

xi

)2

≤ 3
3

∑
i=1

x2
i , we can write

that: ∥∥∥vδ
α(.,y)− vα(.,y)

∥∥∥2

L2(0,π)
≤ 3(T f +Tg +Th) . (18)

From (14), one has

T f ≤
1

α2

∥∥∥( f δ
1 − f δ

2

)∥∥∥2

L2(0,π)
≤ δ 2

α2 , (19)
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It follows from lemma 1 and (15) that

Tg ≤ 8max
k≥1

(
R2

1(k)
)
(1+α

2)
∞

∑
k=1

∣∣∣ck

(
gδ

)
− ck(g)

∣∣∣2 ≤ 8ℓ2

ln2 (2ℓ
α

) (α2 +1)δ 2

α2 ,

(20)

and

Th ≤ max
k≥1

[
3ℓ2 (R2

1(k)
)
+12α

2 (R4
1(k)

)
+12

(
R4

1(k)
)] ∞

∑
k=1

∣∣∣ck

(
hδ

)
− ck(h)

∣∣∣2
=

3ℓ4δ 2

α2 ln2 (2ℓ
α

) (1+
4(1+α2)

α2 ln2 (2ℓ
α

)) , (21)
■

Combining (19), (20) and (21), we deduce that∥∥∥wδ
α(.,y)−wα(.,y)

∥∥∥2

L2(0,π)
≤ 8δ

2
κ1(α)+

(
δ 2

α2

)
κ2(α)+

(
δ 2

α4

)
κ3(α), (22)

where

κ1(α) =
ℓ2

ln2 (2ℓ
α

) , κ2 = 1+8κ1(α)+3κ
2
1 (α), and κ3 = 12κ

2
1 (α).

Remark 1 It is easy to see from (17) that the choice of the regularization parameter
α is only related to the noise level δ but not dependent on the a priori bound.

From lemma 2, if we choose α(δ ) = δ
ε for some ε ∈ (0,1/2), then the error estimate

in (17) is of order
δ 1−2ε

ln
( 2ℓ

δ ε

) , which tends to zero as δ → 0+. 2

The conditional stability means that the solution is continuously dependent on the
given data under certain additional condition [21]. We assume that the exact data
satisfies

f ∈ G1,−2r ⇔∃C1,−2r > 0, such that
∞

∑
k=1

k2re2kℓ|ck( f )|2 ≤C2
1,−2r, r > 0, (23)

g ∈ G1,0 ⇔∃C1,0 > 0, such that
∞

∑
k=1

e2kℓ|ck(g)|2 ≤C2
1,0, (24)

h ∈ G2,0 ⇔∃C2,0 > 0, such that
∞

∑
k=1

e4kℓ|ck(g)|2 ≤C2
2,0. (25)

Lemma 3 Let vα be the solution of the problem (Pα) corresponding to the exact
data. Assume that f ,g and h satisfy the conditions (23), (24) and (25) respectively.
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Then,

∥vα(.,y)− v(.,y)∥2
L2(0,π) ≤ 12σ

2
r (α)C2

1,−2r +Cκ1(α)+9σ
4
1 (α)C2

2,0, (26)

where σr(α) =
ℓr

1

lnr
(
ℓ2
α

) ,C =
(
48C2

1,0 +9(ℓ2 +1)C2
2,0
)
, r > 0. 2

PROOF It follows from the Cauchy-Schwartz inequality

(
3

∑
i=1

xi

)2

≤ 3
3

∑
i=1

x2
i , that

∥vα(.,y)− v(.,y)∥2
L2(0,π) ≤ 3(L f +Lg +Lh) . (27)

Thus, by using lemma 1 and (23), coupled with (14), the term L f can be estimated as
follows

L f ≤
∞

∑
k=1

α2 cosh2(ky)cosh2(kℓ)
cosh2

α(k)
k2r

k2r |ck( f )|2

≤ 4

 ℓ1

ln
(
ℓ2
α

)
2r

∥ f∥2
2,−r ≤ 4C2

1,−2r

 ℓ1

ln
(
ℓ2
α

)
2r

. (28)

Since g ∈ G1,0, the term Lg can be estimated as follows

Lg ≤
∞

∑
k=1

(
2α2 sinh2(k(y− ℓ))

k2 cosh2
α(k)

+
2α2 sinh2(ky)sinh2(kℓ)

k2 cosh2
α(k)

)
|ck(g)|2

≤ 8ℓ2

ln2 (2ℓ
α

) (∥g∥2
L2(0,π)+∥g∥2

1,0

)
≤ 16ℓ2

ln2 (2ℓ
α

)C2
1,0, (29)

By applying the same techniques with the condition (25), we have

Lh ≤ 3(ℓ2 +1)α2 max
k≥1

(R2
1)

∞

∑
k=1

e2kℓ |ck(h)|2 +3α
2 max

k≥1
(R2

2)
∞

∑
k=1

e4kℓ |ck(h)|2

≤

3(ℓ2 +1)ℓ2

ln2 (2ℓ
α

) +3
ℓ4

1

ln4
(
ℓ2
α

)
C2

2,0, (30)

by regrouping the inequalities (28), (29), (30) and (27) we get the desired estimate
(26). ■

Theorem 1 Let v be the solution of the problem (P) corresponding to the exact
data Edata. Let vδ

α be the solution of the perturbed problem
(
Pδ

α

)
corresponding

to the noisy data Eδ
data. Suppose that the regularization parameter α is chosen as

α = δ
ε , (0 < ε <

1
2
), then we have the following estimate



12 A. Benrabah

∥∥∥vδ
α(.,y)− v(.,y)

∥∥∥2

L2(0,π)
≤

√
12σ2

r δ εC2
1,−2r +Cκ1 (δ ε)+9σ4

1 (δ
ε)C2

2,0

+

√
8δ 2κ1 (δ ε)+δ

2(1−ε)
κ2 (δ

ε)+δ
2(1−2ε)

κ3 (δ
ε),

(31)

where κ1 (δ
ε) =

ℓ2

ln2
(

2ℓ
(δ ε)

) , κ2 = 1 + 8κ1 (δ
ε) + 3κ

2
1 (δ

ε) , κ3 = 12κ
2
1 (δ

ε) ,

σr (δ
ε) =

ℓr
1

lnr
(

ℓ2
(δ ε )

) and ℓ1 = rℓ, ℓ2 = 2(ℓ)r/r,C > 0, r > 0. 2

PROOF It is clear that

∥vδ
α(.,y)− v(.,y)∥L2(0,π) ≤ ∥vδ

α(.,y)− vα(.,y)∥L2(0,π)+∥vα(.,y)− v(.,y)∥L2(0,π).
(32)

Combining lemma 2, lemma 3 and the triangle inequality (32), we obtain the desired
estimate. ■

4. Numerical illustrations

Let ℓ = 1, and Ω = Ωx ×Ωy = [0,π]× [0,1]. We propose a semi-discrete finite

difference scheme with step length τx =
π

N +1
. For the purpose of numerical illus-

tration, we take the boundary conditions as

f (x) = g(x) = h(x) =

√
2
π

sin(x), (33)

then, the exact solution v(x,y) with respect to the data (33) is computed by solving
the ill-posed problem (P). The analytical form of the solution is given by

v(x,y) =

√
2
π

{
ey +

1
2

sinh(1)sinh(y)+
y
2

sinh(y−1)
}

sin(x). (34)

Note that in practice, the data f (x),g(x) and h(x) are obtained by measurement, then
we generate noisy data by

f δ = gδ = hδ = f + εrandn(size( f )), (35)
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where ε > 0 indicates the noise level. The bound on the measurement error E(δ ) can
be measured according to

E(δ ) := ∥ f δ − f∥l2 =

(
1

N +1

N+1

∑
i=1

(
fi − f δ

i

)2
)1/2

, (36)

For each y ∈ Ωy, we evaluate the relative error RErw by

RErrv =
∥vδ

α(.,y)− v(.,y)∥l2

∥v(.,y)∥l2
. (37)

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3
Regularization method via nonlocal conditions 

Exact solution
Approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
×10-4 Absolute error

Error: ǫ (noise level) =0,α=0.0537

Fig. 1. v and vδ
α with exact data ε = 0 for y = 1 and the absolute error

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2
Regularization method via nonlocal conditions 

Exact solution
Approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8
×10-4 Absolute error

Error: ǫ (noise level) =0,α=0.0067

Fig. 2. v and vδ
α with exact data ε = 0 for y = 0.7 and the absolute error
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0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3
Regularization method via nonlocal conditions 

Exact solution
Approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03
Absolute error

Error: ǫ (noise level) =0.001,α=0.0548

Fig. 3. v and vδ
α with noisy data ε = 0.001 for y = 1 and the absolute error

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2
Regularization method via nonlocal conditions 

Exact solution
Approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02
Absolute error

Error: ǫ (noise level) =0.001,α=0.008

Fig. 4. v and vδ
α with noisy data ε = 0.001 for y = 0.7 and the absolute error

We will pick up 2 specific values of y to illustrate the goodness of fit of the regularized
solution: y = 0.7 and y = 1. We have Figures 1-6, and Tables 1 and 2 to illustrate
the result in this situation. According to the a priori choice rule, the numerical results
for v(x,1) and v(x,0.7) with exact data are shown in Figures 1 and 2 respectively.
The numerical results for vδ

α(x,y) are plotted in Figures 3 and 5 at y = 1 and in
Figures 4 and 6 for y= 0.7 with various noisy levels ε ∈ {0.001,0.0001}. The relative
errors between exact and regularized solutions with various noisy levels are shown in
Tables 1 and 2. The numerical results presented in all figures show that the regularized
solution works very well and yields a very nice approximation to the exact solution.
Thanks to all figures, we conclude that the regularized solution is stabilized when y
tends to 0. From Tables 2 and 1, one can easily find that smaller values of ε give
better regularized solutions.
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0 0.5 1 1.5 2 2.5 3 3.5
0

1
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3
Regularization method via nonlocal conditions 

Exact solution
Approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3
×10-3 Absolute error

Error: ǫ (noise level) =0.0001,α=0.0536

Fig. 5. v and vδ
α with noisy data ε = 0.0001 for y = 1 and the absolute error
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2
Regularization method via nonlocal conditions 

Exact solution
Approximate solution

0 0.5 1 1.5 2 2.5 3 3.5
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1

2

3

4
×10-3 Absolute error

Error: ǫ (noise level) =0.0001,α=0.0066

Fig. 6. v and vδ
α with noisy data ε = 0.0001 for y = 0.7 and the absolute error

5. Conclusions

In this paper, the Cauchy problem associated to the biharmonic equation in
a two-dimensional domain has been studied. It has been shown that this problem
is ill-posed in the sense of Hadamard. This situation means that the solution does not
depend continuously on the given data. In order to solve it, we proposed a regular-
ization method via nonlocal conditions. Convergence and stability estimates, as the
noise level tends to zero, are formulated and proved in the setting of a priori parame-
ter choice. The numerical illustration shows that the regularized solution works very
well. Our problem is restricted to a rectangle geometry for which the eigenvalues
and eigenfunctions of ∆ are available. However, if we let an arbitrary domain with
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Table 1. The relative errors at y = 1 and various noisy levels

Noise level ε RErrw Regularization parameter α

0 5.271 ·10−5 0.0537
0.01 0.067 0.072

0.001 0.0078 0.0548
0.0001 8.3449 ·10−4 0.0563

Table 2. The relative errors at y = 0.7 and various noisy levels

Noise level ε RErrw Regularization parameter α

0 2.3458 ·10−5 0.0067
0.01 0.0351 0.02

0.001 0.0053 0.008
0.0001 7.2454 ·10−4 0.0066

a C2−boundary, the analysis and the regularization method in this paper is
not applied. This open problem is a potential future work.
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