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Abstract. The presented paper is focused on the comparison of the numerical solution of 
the Laplace equation in a two-dimensional space with the results obtained with the use  
of the analytical method. The results of the numerical model are computed on the base of  
the Finite Element Method. The analytical solution of the considered equation is obtained  
using the Fourier series. Finally the results of both methods are compared in order to verify  
the accuracy of numerical implementation. 
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1. Introduction 

Mathematical models of many physical phenomena (in fields such as electricity 
mechanics, magnetism, thermodynamics, etc.) are described using second order 
linear partial differential equations, which are called equations of mathematical 
physics. The task of determining functions that describe these equations leads to  
an infinite number of solutions. For specific cases,  special solutions that meet  
certain initial and boundary conditions are sought [1].  

In order to solve equations of mathematical physics, the analytical or numerical 
methods are used. Analytical methods allow one to obtain an exact solution of  
the considered problem, but they cannot be used in all cases. Numerical methods 
can be used in almost every case, but they give approximated results. 

One of the most popular analytical methods used to solve equations of mathe-
matical physics is the Fourier method. It is based on finding a solution in the form 
of the product of functions where each of them is dependent only on one variable. 
The use of appropriate boundary conditions makes it possible to determine the 
value of constants appearing in the solutions [2, 3]. 
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One of the numerical methods widely used in the solving of equations of math-
ematical physics is the Finite Element Method (FEM). In this method, the consid-
ered area is divided into small and simple-shaped sub-areas, called finite elements, 
in which approximation functions are determined. These functions are algebraic 
polynomials, which are determined on the basis of the rules of approximation in-
terpolation. The form of the approximation functions depends on the number and 
positions of the nodes located within the finite element. Unknown variables in the 
nodes, such as temperature values are determined with the use of known boundary 
conditions. Finally the discrete set of the nodal variables is calculated as the solu-
tion of the system of algebraic equations [4-6].  

Many authors from different fields compare results of their numerical models 
with analytical solutions or with the numerical solutions obtained on the basis of 
different models [7]. The comparison with the analytical solution proves the math- 
ematical accuracy of developed model while comparing obtained results with the 
numerical solution of considered problem proves the accuracy of implementation 
of used numerical method. To prove the accuracy of a used numerical model in  
the simulation of the behaviour of real systems or objects, the comparison with  
an experiment is often performed [8].  

In order to verify the correctness of presented results obtained with the use of 
FEM, they are compared with the analytical solution of the considered equation.  
A similar comparison, but for a one-dimensional case, was done in [9]. An FEM 
solution is obtained with the use of an originally developed computer program. 

2. Formulation of the problem 

Let’s consider a two-dimensional area ax 0 , by 0  in rectangular coor-
dinate systems. At the boundaries of the region the Dirichlet boundary conditions 
 

are assigned [10]: 
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The distribution of the sought function  yxu ,  within the considered area is  
described by the Laplace equation in the form: 
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On the basis of conditions (1)-(3), it was assumed, that 0)0()0(  gf  and 

0)()(  agaf . The scheme of the considered problem is presented in Figure 1. 
 

 
Fig. 1. Scheme of the problem 

3. Analytical solution 

In order to find the analytical solution of Laplace equation (4) with the bounda-
ry conditions (1)-(3) the Fourier method is used. The solution of the equation (4) 
has a form of the following function [1, 2, 10]: 

 
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kk yYxXyxu )()(),(  (5) 

On the assumption that each component of the sum (5) meets the differential equa-
tion (4), the following relation is obtained: 
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where k  is constant. Moreover, each component of the sum (5) must satisfy the 
condition (1), therefore: 

 0)()0( yYX kk  (8) 

 0)()( yYaX kk  (9) 

This means that the functions kX  are the solution of the following problem: 

y 

x  0 a 

u(x, b) = g(x) 
b 

u(x, 0) = f(x) 

u(a, y) = 0 u(0, y) = 0 
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On the assumption that 0k  (for 0k  the trivial solutions of the equation are 

obtained) finally it follows that: 
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and the solutions of equation (10) are functions kX  that takes the form (11): 
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By substituting (11) and (12) into equation (7) and on the assumption that 
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Finally, the solution of equation (6) takes the form [10]: 
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In order to determine the values of constants kc  and kd  boundary conditions 

(2), (3) are used. Therefore: 
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for ,...2,1k . 
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4. Numerical solution 

To find the numerical solution of the equation (4) with conditions (1)-(3),  
the finite element method is used. 

Equation (4) is multiplied by the function ),( yxw  and then integrated over  
domain   [4-6]: 
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Within the equation (17) are the terms of the second order. To lower the order of 
the equation it is necessary to use Green’s theorem as follows:  
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where xn , yn  are components of the vector normal to the external boundary. 

In the case of the integral function, which appears in the second part on the right 

side of the equation (18), the substitution x y
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After substitution of (19) to equation (17) it can be written: 
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In order to perform spatial discretization, domain   is spatially discretized with 
the use of triangular finite elements. The nodes, where the values of the function u  
are determined, are located in the vertices of each finite element. In order to sim-
plify the mathematical operations, each finite element is transformed from the real 
space yx,  to the normalized one  , . Linear shape functions in a normalized  

triangle , 1,...,3kN k  , take the form [4-6]: 
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The derivatives of the shape function (21) with respect to ,   are used to determine 

the Jacobian, which is defined as follows: 
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In order to determine derivatives of the shape functions with respect to variables 
yx, , the following relation must be used: 
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Using the Galerkin formulation test functions ( , )w x y  can be written as: 

  ( , ) ,   for 1, ,3i iw x y N x y i  …  (25) 

the equation (20) takes a form [4-6]: 
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where (e) is a triangular finite element. 
The integrals from the equation (26) can be written in the matrix form:  
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where  e
K  is the coefficient matrix of the element and  e

B  is the right hand side 
vector of the element. 

Finally, one can write the following local matrix equation: 

      e e eK U B  (29) 

The aggregation procedure of the local equations allows one to obtain the follow-
ing global system of equations: 

 BKU   (30) 

The equation (30) requires modification of calculations at every step by introduc-
ing the boundary conditions. 

5. Examples of calculation 

In order to verify the accuracy of numerical implementation, the results of  
the solution of equation (4) with the boundary conditions (1)-(3) obtained with  
the use of analytical and numerical methods are compared. In the case of an ana-
lytical solution obtained using the Fourier method, the calculations were carried out 
using formulas (14)-(16). To obtain a numerical solution, the finite element method 
described in chapter 4 was used. 

The calculations were carried out for a square-shaped area with a side length  
of 1 m with the boundary conditions shown in Figure 2. 
 

 
Fig. 2. Boundary conditions 

The calculations were made with the use of three meshes of different qualities. 
In the first case, the average dimension of the finite element was 0.1eh   m and  

y 

x  0 a 

u(x, 1) = –400x2 + 400x 
b 

u(x, 0) = 400x2 – 400x 

u(1, y) = 0 u(0, y) = 0 
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the mesh contained 142 nodes, in the second case 0.01eh   m and 13459 nodes,  

in the last one 0.001eh   m and 1323240 nodes.  

The results of the analytical and numerical solutions obtained for the second 
case are shown in Figures 3 and 4. 
 

 
Fig. 3. Distribution of function u(x, y) obtained using the Fourier series (the second case) 

 
Fig. 4. Distribution of function u(x, y) obtained using the FEM (the second case) 

In order to compare the results of analytical and numerical calculations, the per-
centage differences between the results obtained for the three cases were calculated 
using the following relationship: 
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They are shown in Figures 5-7. 
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Fig. 5. Distribution of percentage differences of u(x, y) for the first case 

 
Fig. 6. Distribution of percentage differences for u(x, y) for the second case 

 

 
Fig. 7. Distribution of percentage differences of u(x, y) for the third case 
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6. Conclusions 

The results of calculation obtained for the analytical (Fig. 3) and numerical  
(Fig. 4) solutions are very similar. In the first variant, the maximum deviations be-
tween solutions reach 0.3%, in the second variant 0.0026%, and in the last one 
0.00012%. This confirms the correctness of both models and shows the significant 
influence of the mesh quality on the accuracy of the FEM model.  

The presented model can be modified and used to obtain solutions for three-
dimensional problems. In the case of the analytical model, the only limitation is the 
complexity of geometry of the analyzed area, while the FEM formulation can be 
succesfully used for domains of high complexity. The developed computer program 
is robust and flexible, and it can be easily modified to solve different equations  
or to model various physical phenomena. 
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