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Abstract. We investigate the variability of one of the most often used complexity measures
in the analysis of the time series of RR intervals, i.e. Sample Entropy. The analysis is carried
out for a dense matrix of possible r thresholds in 79 24h recordings, for segments consisting
of 5000 consecutive beats, randomly selected from the whole recording. It is repeated
for the same recordings in random order. This study is made possible by the novel NCM
algorithm which is many orders of magnitude faster than the alternative approaches. We
find that the bootstrapped standard errors for Sample entropy are large for RR intervals in
physiological order compared to the standard errors for shuffled data which correspond to the
maximum available entropy. This result indicates that Sample Entropy varies widely over the
circadian period. This paper is purely methodological and no physiological interpretations
are attempted.
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1. Introduction

Sample Entropy is one of the most often used complexity-based measures used
in Heart Rate Variability analysis [1–3]. It is based on the Grassberger-Proaccia [4]
approach to calculating the correlation dimension, which was utilized by Steven Pin-
cus to define the complexity parameter Approximate Entropy (ApEn) with the aim of
estimating the Kolmogorov-Sinai (KS) entropy for certain processes and also quan-
tifying the complexity inherent in biological processes. This approach was also used
for quantifying the complexity inherent in biological processes, mainly the RR inter-
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vals time series, which is the time series of the time distances between consecutive R
waves in the QRS complexes [1,5–7]. This approach was further refined by Richman
and Moorman [7] to remove the bias which is inherent in ApEn as well as improv-
ing the definition of the parameter in probabilistic terms (SampEn involves exact
conditional probabilities, while ApEn only uses approximate ones) and making the
parameter more reliable for short recordings.

Since then, SampEn has been used in an enormous number of theoretical, phys-
iological and clinical studies. The applications range from evaluating emotions [8],
to HRV [9], to predicting the life of Li-ion batteries [10]. The methodology is usu-
ally very similar - the variance of the analyzed time series is calculated, and then the
similarity threshold is selected in relation to the standard deviation (i.e. square root
of the calculated variance). The usual SampEn algorithm is applied to the time series
and the results are processed with the use of standard statistical methods.

The segments for which the analysis is carried out is usually quite short - from
a few hundred to a few thousand points [11]. This is due to the relatively high com-
putational burden of the method which makes it impracticable to calculate for long
time series. A recent development in the form of the NCM algorithm makes it pos-
sible to rapidly calculate this parameter for very long recordings, including 24-hour
ECG recordings. This algorithm does not rely on hardware, like multiprocessing for
instance, but rather relies on exploiting the mathematical structure of the algorithm
to speed it up, without introducing any approximations [11].

As mentioned above, the analyzed segments of ECG are quite short and they are
selected quite randomly from all the possible segments in a 24-hour recording. Thus,
it is interesting to see what the variability of the SampEn parameter is throughout the
24 hours, especially in relation to a well-defined level which in this paper is assumed
to be the RR intervals time series in random order.

For this reason, in the present paper, our goal is to derive empirical bounds for
SampEn variability in a physiological time series of RR intervals, study their depen-
dence on the threshold r, and relate it to natural reference level, which is the SampEn
of the recordings in random order. Another, equally important goal of this paper is to
check whether it is possible to construct a bootstrapping approach to comparing the
values of Sample Entropy over a range of values with the use of the NCM algorithm.

2. Sample Entropy

In the present section, we describe the salient properties of Sample Entropy to the
extent necessary to carry on the analysis in the paper. Details may be found in [7]
and references therein.

The algorithm of Sample Entropy may be examined from many points of view as
presented in [11]. One of them, which proved to be helpful in algorhythmic work,
is the differences between curves that are built from correlation sums, defined by the
following functions:
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Cm(r) = L−1
m

Lm

∑
i=1

Cm
i (r). (1)

The elements inside the sum in equation (1) are defined as follows

Cm
i (r) = (Lm−1)−1

Lm

∑
j=1, j 6=i

Θ(r−|~vm(i)−~vm( j)|), (2)

where Θ is the Heaviside function defined in the following way

Θ(x) =
{

1 if x≥ 0
0 if x < 0 .

(3)

The norm in the Heaviside function is the maximum coordinate difference [5] and is
defined as

|~vm(i)−~vm( j)|= max
k=1,2,...,m

(|u(i+(k−1)τ)−u( j+(k−1))|). (4)

and vectors v are constructed in the following way

~vm,τ(i) = [u(i),u(i+ τ),u(i+2τ), . . . ,u(i+(m−1)τ)] (5)

i.e. vector ~vm,τ(i) consists of m consecutive points in the studied dataset.
The r parameter in the above formulas is the threshold, which is usually defined in
relation to the standard deviation of the time series, usually between 0.1 and 0.2 [5].

An alternative way of looking at the Cm
i parameter is the following: it is the prob-

ability that a vector vm( j) is within distance r of another vector vm(i). This can be
expressed as:

Ci
m =

Bi

N−m+1
(6)

Where Bi is the number of “matches”, or, in other words, the count of how many
times the Heaviside function defined by eq. (3) is non-zero [7].

Sample entropy is then defined as

SampEn =− ln
Cm+1(r)
Cm(r)

, (7)

which can be interpreted as the spread between adjacent ln(Cm(r)) curves in the first
interpretation [11] or as the negative log of conditional probability that two sequences
within a maximum distance of r for m points remain within this distance for m+ 1
points [7].
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The first interpretation uses similarity while the other one uses repeatability - both
lead to the conclusion, that SampEn may be treated as a measure of complexity. It
can be argued that an estimator of this type estimates the KS entropy for a limited
range of well-defined processes [5].

3. The NCM algorithm

The NCM algorithm is based on both the look-up table and vectorization tech-
niques. The procedure utilizes triangular matrices N̂ with the following elements:

ni j = ||ui−ui+( j+1)·τ || (8)

where u is the component of the time series (e.g. RR interval) and τ is the time lag.
For a dataset containing N points, the dimension of the matrix is N− τ−1 rows and
(N− 1)/τ − 1 columns, which is a rather large matrix, but it is enough to set a lim-
ited sub-block for the calculation. Because of the symmetry of the matrix, elements
whose indices do not meet the condition i+( j + 1) · τ ≤ N− τ − 1 are set to zero,
which results in halving the number of summations in the correlation sum algorithm
(eq. (2)). The next effect of the assumed approach is removing redundant opera-
tions in calculating Cm by reducing the number of operations for a maximum norm
from m2 to m. The last large speed improvement is obtained by calculating the first
occurrence of 0 from an arithmetic operation instead of a loop, with a zero at

(nm
i, j−b)/a, (9)

for every n̂m
i, j and with the set of filter values defined as a linear function r̂ f (î) with

a =−rmax− rmin

n−1
, b = rmax. (10)

There are, obviously, other optimizations customarily used in algorithmic techniques.
The full description of the algorithm may be found in [11].

4. Bootstrapping

Bootstrapping is a method of testing or measuring a quantity which relies on ran-
dom sampling with replacement. It allows one to estimate the sampling distribution
of statistics in cases in which the underlying distribution is unknown. The basic
premise of this method is that the repeated sampling with replacement from the sam-
ple parallels repeated measurement from the population. Bootstrapping can be used
for constructing tests of hypotheses or to construct estimators without the use of stan-
dard statistical inference, thus avoiding the complications of pivotal variables [12].
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5. Materials and methods

The calculations were carried out for RR intervals extracted from the 24-h Holter
ECG recordings of 79 healthy volunteers, 41 men, aged 35±7.4 years. All subjects
were in sinus rhythm (55-90 beats per minute) and the average number of heart beats
of sinus origin was 106432. The subjects had not suffered from any chronic or acute
disease up to 3 months before the examination. The participants were not taking any
medications and were not involved in any kind of endurance training.

The ECG lines from which the RR intervals were extracted were sampled at
200 Hz. No interpolation algorithm was used to extract the R-waves. The resting
heart rate of the subjects was between 50 and 90 beats per minute. The R-waves were
first automatically identified by the Zymed system and then reviewed by a trained
technician. No RR time series contained over 1% ectopic beats or artefacts.

To establish the experimental bounds of the variability of the RR intervals, each
recording was divided into 5000 beats (approximately 1-hour) segments. These seg-
ments were selected randomly, with replacement from the whole recording so as to
meet the bootstrapping technique requirements [12]. By repeated sampling, we es-
tablish the data-based regions corresponding to three standard errors of the normal
distribution, beyond which the distributions drop to zero.

The 24-h Holter ECG contains data from both wake and sleep states. In this paper,
however, we do not try to reach any physiological conclusions. Our aim is to show
how to construct bootstrapped standard errors with the use of NCM for a series over
an extended amount of time. RR intervals from 24-h are among the longest such
series and the seep-wake difference does not affect any of the methods constructed in
this paper.

The SampEn was calculated for all the segments, for a dense range of r values –
from 0.01 to 300 ms with the step of 0.3 ms. This approximately corresponds to the
fractional change of SD from 8.3×10−5SD to 2.5SD by 2.5×10−4SD. This step was
carried out with the use of the NCM algorithm. If the main purpose of the study was
physiological rather than methodological, using the fractional change of SD from the
start would be a more correct approach. The Python code for the implementation
used in this paper can be found in [13].

The next step consisted of shuffling the 79 recordings to random order and repeat-
ing the above procedure.

We present the results as graphs and some representative numerical results.

6. Results

The profile of the SampEn parameter obtained for a single individual is presented
in Figure 1. The yellow part of the figure corresponds to the segments in physio-
logical order, the green elements are segments for the same recordings after shuf-
fling. Table 1 contains a selection of representative SampEn values for characteristic
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Fig. 1. The values of SampEn for a range of r values for 1-hour segments from a healthy,
36 year old male. The yellow area corresponds to the RR intervals in physiological order,

the green area corresponds to the same data after shuffling

r values for the single recording presented in Figure 1 - they are expressed as ranges
(minimum to maximum values) measured over segments of 0.6 ms width on the r
axis, centered on the r value.

Table 1
SampEn ranges (minimum to maximum value) for characteristic r values

r [ms] 50 100 150
physiological order (0.02−0.59) (∼ 0−0.19) (∼ 0−0.11)

random order (1.60−1.88) (0.99−1.24) (0.84−1.06)
r [ms] 200 250 300

physiological order (∼ 0−0.08) (∼ 0−0.03) (∼ 0−0.01)
random order (0.54−0.70) (0.41−0.56) (0.30−0.42)

As can be seen, the shuffled distribution lies far above the physiological distribution
and is much less variable. The boundaries of each region for each r value may be
treated as corresponding to standard errors of the mean value, since they drop to
0 outside. On the basis of the analysis, we can say that the difference between the
Sample Entropy derived from physiologically and randomly distributed RRs is highly
statistically different for all values of threshold r. This is true of all the recordings
analyzed. It is also interesting to note that the SampEn values are very variable for
each value of r resulting in a substantial spread, and that this spread also depends
on r. This is not the case for the shuffled values, which are well localized along the
curve, or all values of r.

The profile for SampEn for the whole group is presented in Figure 2 and Table 2
- the interpretation of the regions is the same.
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Fig. 2. The values of SampEn for a range of r values for 1-hour segments from
the whole group of 79 healthy individuals - the rest of the description as in Figure 1

Table 2SampEn ranges (minimum to maximum value) for characteristic r values
for the whole analyzed group

r [ms] 50 100 150
physiological order (∼ 0−1.51) (∼ 0−0.89) (∼ 0−0.67)

random order (1.59−1.83) (0.90−1.21) (0.80−1.11)
r [ms] 200 250 300

physiological order (∼ 0−0.61) (∼ 0−0.38) (∼ 0−0.23)
random order (0.55−0.73) (0.42−0.55) (0.30−0.41)

In both these figures and tables, the spread of SampEn values for physiological order
is also much greater than that of random order, and, similarly to the above case, both
regions are well separated, except for values of r below 10 ms, where some overlap
can be observed. This overlap happens in the region that is not used for physiological
interpretations (it is under 0.1 SD in our case). The two most probable reasons for
this phenomenon are the fact that all RR intervals time series become less and less
self-similar as r drops, so SampEn should tend to the same values as r decreases. The
other reason for this may the fact that we have used absolute values of r rather than
values in fractions of SD. If the time series are generated by the same or very similar
processes, using r values in ms should spread the lines along the r axis. If we had
used the fractions of SD, the overlap would most probably begin for values which are
even smaller. Thus, in general, all the observations made for the individual case also
apply here.

7. Conclusions

In this paper we have demonstrated that the NCM algorithm makes it possible
to derive the bootstrapping distribution of the Sample Entropy parameter on a dense
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grid of threshold r values. We find this distribution for the RR intervals time series in
both physiological order and after shuffling. We found that the areas of physiological
and random processes are well separated which means that in a formal statistical test
we get a significant result rejecting the hypothesis that the regions overlap. Another
result we noted was the fact that in the physiological case, the region covered by
the SampEn value spreads depending on the r value, and in the random case the
bootstrapped boundaries are much less sensitive to the threshold.

The main methodological result is the procedure for comparing regions of a Sam-
ple Entropy value parametrized by r. This may be extended to other domains, like
time and comparing similar segments of ECG for instance, which may be very impor-
tant for studying processes with well-defined boundaries, like the ECG for example
from polysomnographic studies, where the moment of falling asleep and waking up
or transitions between phases of sleep can be identified by a trained professional.
The methods presented in this paper allow one to compare similar (in a broad sense)
segments.
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