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Abstract. Educating young software engineers and IT experts is a great challenge nowadays.
Still new technologies are used in a practical approach and many of them come from formal
methods. To help future software experts in the understanding of formal methods grounded
in semantics, learning software that illustrates and visualizes important techniques seems to
be very fruitful. In this paper, we present software, which handles the arithmetic and Boolean
expressions, their analysis, evaluation, drawing the syntax tree and the other techniques with
the expressions. This software is devoted as a teaching tool for teachers when explaining
appropriate theory and for students for self-studying and making their own experiments.
Furthermore, this software is an integral part of our software package for several semantic
methods.
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1. Introduction

At present, computer science makes use of various formal methods and selected
methods in applied mathematics to help in the understanding of complex software
systems and to reason about their behavior. Formal methods are very important for
developing of correct software systems, in particular to verify the correctness of the
systems or at least of some desired aspects of their behavior. In the last decades,
the impact of formal methods increases more and more [1, 2]. In the educational
process, we consider adequately educating and training them in the basics of formal
logic and formal language semantics to be a very important role. In this manner, the
tools support software development on the basis of formal methods [3, 4]. All of these
tools and techniques are rooted in the formal semantics of the particular programming
languages. Based on our experience, we extended the package of software support
tools [5, 6] with a new module for handling the arithmetic and Boolean expressions.
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During the execution of many programs, some expressions are evaluated and used
for control flow or stored in memory as partial or final results of calculations [7, 8].
The language Jane works with both types of expressions. The arithmetic expressions
are implicitly typed as integers. Their values can be evaluated as transient, used in
Boolean expressions and forgotten; or stored in memory when standing on the right-
hand side of an assignment statement. Boolean expressions are typed with standard
Boolean type with two values (true and false). We note, that the Jane programming
language does not contain short circuit operators. Then always the whole Boolean
expression is being evaluated. The values of Boolean expressions are only transient
because in our language we consider only storing of integers in memory and we
do not consider to store Boolean values in memory. The Boolean expressions are
evaluated and used in conditional and loop statements, and their values are never
stored in memory for another use. When working with expressions, it is necessary to
test them for the syntax errors. After an error occurs, the error recovery process starts
as a next step [9]. On the other hand, when an expression is syntactically correct,
a user needs to assign concrete values to variables in an expression and to evaluate
the given expression for the final resulting value.

Conversion to postfix notation is necessary when constructing the syntax tree and
when evaluating the expressions. Furthermore, a syntax tree of an expression is im-
portant for better understanding of the structure of an expression when evaluating it
[9]. Taking into consideration all these requirements, we have prepared a new module
for handling the expressions. The program:
• checks the input expression and recognizes the type (arithmetic or Boolean one);
• realizes the error recovery;
• allows a user to input the values for particular variables identified in the expression

entered;
• evaluates the whole expression with input values (can be possibly changed inter-

actively, in any time);
• produces the postfix form of an expression;
• draws the abstract syntax tree for an input expression in three versions (only vari-

able names or only values or variable names with values);
• stores the output.

We present in the second section the obvious syntax of arithmetic and Boolean
expressions of the Jane programming language. In the third section we define the
semantic functions using standard mathematical methods for the semantic of expres-
sions. The fourth section presents the learning software package for a course on
Semantics of programming languages and in the fifth section, we present how our
module for handling the expressions was developed and how it works.



Learning software for handling the mathematical expressions 79

2. Syntax of expressions

A course on Semantics of programming languages is oriented mostly with seman-
tics of imperative languages. For purposes of the course, the main facts about the
imperative paradigm are presented on the model programming language Jane.

Jane is a simple imperative language, which contains all traditional imperative
constructs (the so called van Dijkstra’s constructs or D-diagrams [10]) - assignment
statement for storing the values in memory, sequencing of statements, conditional
statement and prefix logical loop statement. Furthermore, it contains also an empty
statement. The greatest advantage of an empty statement is that it contributes to writ-
ing clear and unambiguous programs. The syntax of statements in Jane programming
language is as follows:

S ::= x := e | skip | S;S | if b then S else S | while b do S.

In this section we briefly present the syntax of arithmetic and Boolean expressions
that are very widely used in computations. Our module allows one to work with
standard and extended grammars of particular expressions, so we present in both
cases the standard and the extended syntax of expressions.

2.1. Arithmetic expressions

Arithmetic expressions usually stand on the right-hand side of assignment state-
ments. Their standard syntax is the following:

e ::= n | x | e+ e | e− e | e∗ e | (e), (1)

where:
• n stands for a string of numerals;
• x represents an atomic variable;
• e+ e, e− e, e∗ e are standard arithmetic operations; and
• any e ∈ Expr stands for well-formed syntactic element of syntactic domain for

arithmetic expressions.

All expressions are implicitly typed as integers.
Moreover, if there is a situation where user also needs an integer division operation

or unary operators, the program can work with extended grammar in this form:

e ::= n | x | e+ e | e− e | e∗ e | e/e | − e | + e | (e). (2)

An operation of integer division is in some languages denoted as e div e.
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2.2. Boolean expressions

Boolean expressions occur in conditional and loop statements. Here, the values of
Boolean expressions are never stored; they are only used in the flow of program. We
say that these values are transient. Syntax of Boolean expressions is the following:

b ::= false | true | e = e | e≤ e | ¬b | b∧b | (b), (3)

where:
• false and true are Boolean constants;
• e = e and e≤ e represent equality and less or equal relation, resp.;
• ¬b stands for a negation of the Boolean expression;
• b∧b represents conjunction of two Boolean expressions; and
• any b ∈ BExpr stands for a well-formed syntactic element of syntactic domain for

Boolean expressions.

All Boolean expressions are typed as two-valued Booleans.
To make our application closer to the standard use of Boolean operations, it allows

one to also use the operator for disjunction of two Boolean expressions,

b∨b

according to the extended following grammar:

b ::= false | true | e = e | e≤ e | ¬b | b∧b | b∨b | (b). (4)

The remaining Boolean operations over two Boolean expressions and the remaining
inequalities can be constructed by combining the basic relations and logical connec-
tions listed in rules (3) and (4).

3. Semantics of expressions

In this section, we show how the semantics of arithmetic and Boolean expressions
is defined. To define semantics, we start with the notion of a memory state.

3.1. The notion of memory state

Execution of a program generally causes a change of some memory cells. Every
snapshot of a memory during program execution can be abstracted as a state where
program variables have assigned some values [10, 11]. Execution of a statement
can modify some values of program variables, i.e. a state is changed. On the other
hand, during the evaluation of expressions, the values are only taken from a memory
without any change of particular memory cells.

States are enclosed in a semantic domain of states denoted State, which is a func-
tion space:
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State = Var→ Z,

where Var stands for a semantic domain for variables’ names. This domain consists
only of well-formed variables’ names and it has no internal structure for semantic
purposes. Any state s ∈ State represents a function and its application on the name
of a variable provides the value of the given variable:

s x ∈ Z.

3.2. Semantics of arithmetic expressions

Semantics of arithmetic expressions is defined by the semantic function

E : Expr→ State→ Z,

where Z stands for a semantic domain of integer numbers and semantic function is
defined for particular syntactic forms of rules (1) and (2) as follows:

E JnKs = N JnK,
E JxKs = s x,
E Je1 + e2Ks = E Je1Ks⊕E Je2Ks,
E Je1− e2Ks = E Je1Ks	E Je2Ks,
E Je1 ∗ e2Ks = E Je1Ks⊗E Je2Ks,
E Je1/e2Ks = E Je1Ks�E Je2Ks,
E J−eKs = N J0K	E JeKs,
E J+eKs = E JeKs,
E J(e)Ks = (E JeKs) ,

where the operators on the left-hand side represent the syntactic form of arithmetic
operators, the operator on the right-hand side represent the real mathematic operation
and the function N is a function that transforms syntactic numerals into integer
values.

3.3. Semantics of Boolean expressions

Semantics of Boolean expressions is defined by the following semantic function

B : BExpr→ State→ B,

where B stands for a semantic domain of Boolean values:

B = {false, true}

and the semantic function is defined for particular syntactic forms of rules (3) and (4)
as follows:
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BJtrueK s = true;
BJfalseK s = false;

BJe1 = e2K s =

{
true, if E Je1K s = E Je2K s;
false, if E Je1K s 6= E Je2K s;

BJe1 ≤ e2K s =

{
true, if E Je1K s≤ E Je2K s;
false, if E Je1K s > E Je2K s;

BJ¬bK s =

{
true, if BJbK s = false;
false, if BJbK s = true;

BJb1 ∧ b2K s =

{
true, if BJb1K s = true and BJb2K s = true;
false, if BJb1K s = false or BJb2K s = false;

BJb1 ∨ b2K s =

{
false, if BJb1K s = false and BJb2K s = false;
true, if BJb1K s = true or BJb2K s = true;

BJ(b)Ks = (BJbKs) .

4. Software package for teaching

A teaching course on Semantics of programming language is now being supported
by a software package consisting of several modules. Actually, the software package
contains the following modules:
• compiler of source in Jane into Abstract machine code - a source-to-source com-

piler (Fig. 1 - case a);
• emulator of Abstract machine code (Fig. 1 - case a);
• decompiler of Abstract machine code into Jane source (Fig. 1 - case b);
• a tool for visualization of program execution based on categorical denotational

semantics (Fig. 1 - case c);
• a tool for handling the expressions described in this paper (Fig. 1 - case d).

A general scheme of our software package is depicted in Figure 1. In this paper we
introduce and present the last case - the software module for working with expres-
sions.

The software package allows one to work with the Jane language - to compile it
into Abstract machine code when working with structural operational semantics and
then to execute the Abstract machine code, to find source in Jane from the input Ab-
stract machine code and to visualize the running program in categorical denotational
semantics. Furthermore, the arithmetic and Boolean expressions are very widely used
in programs and especially in each of the listed modules, so the module for expres-
sions is an important part of this package. The main motivation for this integrated
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software package was to help students understand better formal semantics, and to
motivate them to make their own experiments. We follow the joint goal based on
common research work [12]. In the next chapter we completely present the module
in case d of our software package.

Fig. 1. General scheme of software package

5. Implementation of a module

The application we developed implements the primary functions that are nece-
ssary in the study of the course Semantics of programming languages. All of them are
related to evaluating both arithmetical expressions and Boolean expressions. Another
one of the primary function is to produce an Abstract Syntax Tree (AST) reflecting
the structure of the input expression, if the input expression is a valid expression in the
Jane programming language according to the defined grammar [10, 13]. Secondary
functions represent input expression in the postfix form and produce an error message
if an input expression is not valid [13].
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The implementation of the program consists of several software modules:
• lexical analysis;
• transformation of input expressions given in infix form to postfix form;
• syntax analysis;
• assignment of values to variables;
• evaluation of the input expression;
• painting the Abstract Syntax Tree (AST).

An object-oriented design was used to develop the module. The general (simpli-
fied) UML scheme of the module is in Figure 2.

Fig. 2. Simplified UML diagram of the module

We used the Swing API for providing a graphical user interface (GUI) for our
application. Swing was developed to provide a more sophisticated set of GUI com-
ponents than the earlier Abstract Window Toolkit (AWT). The Java Swing API pro-
vides a pluggable look-and-feel (PLAF) capability, which allows Swing GUI widgets
to change appearance based on the programmer’s customized look-and-feel setting
[15]. Swing API components are not implemented by a platform-specific code. In-
stead, they are written entirely in Java and therefore are platform-independent.

The first step in implementation of a software module is a lexical analyzer, where
we at first created a Token class that represents entity of token.
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An input expression is represented as a String data type, and the first step after
input is to delete all whitespaces (typically spaces, line feeds ”\n”, line breaks ”\r”,
tabs ”\t” etc.) in the input expression. After this, it is necessary to check whether the
string characters belong to the defined grammar [13].

The next step of implementation of the Lexical analyzer is an implementation
parser() method to parse the input string and to store tokens to the prepared data
structure LinkedList< Token >. Further action is transforming the input expression in
the infix form to the postfix form. For this action we created the transformToPostfix()
method which is based on the shunting-yard algorithm [14]. Here, we first defined
the precedence of all existing operators in the Jane programming language. Each
input expression in the Jane programming language will have a single AST based on
the following precedence and associativity rules:
• parentheses have precedence over all operators;
• unary +, unary − and ¬ have precedence over all binary operators;
• operators ∗ and / have precedence over binary +, −, ∨, ∧, =, ≤;
• operators + and − have precedence over ∨, ∧, =, ≤.

The shunting-yard algorithm is a method for transforming arithmetic and Boolean
expressions specified in infix notation to postfix notation, also known as Reverse
Polish notation (RPN). This algorithm was invented by Edsger Wybe Dijkstra in 1960
[14], and an example of using this algorithm also implemented by our software is
depicted in Figure 3. The idea of the shunting-yard algorithm is to keep operators in
the first stack, noted as ”Additional stack” and the postfix expression is formed in the
second (output) stack, which we noted as ”Output expression” [14]. The directional
arrow into Garbage Collector in the Figure 3 represents deleted useless element from
the stack. Generally the Garbage Collector in this algorithm is used for automatic
memory management.

The algorithm works as follows: it sequentially reads the tokens from the input
list of tokens and moves the read token onto one of the stacks, according to the rules
listed below.
• If the token is a constant or a variable, it is moved onto the output stack.
• If the token is an operator, the algorithm moves it onto the additional stack, but

before that it checks the precedence of the operator on a top of the additional stack.
If there is an operator with a higher or equal precedence and the actual work-in-
process operator is left associative or the actual work-in-process operator is right
associative and at the top of the additional stack there is an operator with a higher
precedence, then algorithm moves the operator from the top of the additional stack
onto the output stack. This procedure repeats until the additional stack is empty or
the condition for moving token from the top of the additional stack is not satisfied.
• If the token is a left parenthesis, it is moved onto the additional stack.
• If the token is a right parenthesis, the algorithm sequentially moves all the tokens

from the additional stack onto the output stack until the token on the top of the
additional stack is left parenthesis. After that, the algorithm moves the left paren-
thesis from the additional stack. If the algorithm does not find the left parenthesis,
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then the input expression is not syntactically correct. In this case, the user will
receive an error message.

In case of successful processing of the input expression by the shunting-yard al-
gorithm we obtain an expression in the Reverse Polish Notation as an output ar-
gument. The method’s input parameter is the LinkedList < Token > data struc-
ture which represents an input expression in infix form, and output parameter the
LinkedList < Token > data structure which represent input expression transformed
into the postfix form (RPN).

Moreover, the shunting-yard algorithm can be used to directly evaluate expres-
sions [14].

The next step of development is implementation of the software module for syntax
analysis. To achieve this goal, we created the syntaxChecker() method which handles
the following input parameters:
• LinkedList < Token > data structure - represents input expression in postfix form,

and
• the Boolean variable - defines working mode of the syntaxChecker().

The value true of the Boolean variable defines the extended grammar working mode
of the syntaxChecker() and handling the expressions according the syntax in (4);
and value false of the Boolean variable defines the base grammar working mode
of the syntaxChecker() and handling the expressions according the syntax in (3).
This method was implemented on the basis of the scheme of the algorithm, which is
depicted in Figure 4.

As it can be seen in Figure 4, the syntaxChecker() method contains one initial
state (Start) and several finite ones. This method finishes in the final state if an in-
put expression is syntactically correct. Otherwise the method terminates in one of
the SemanticsException states. The module of the SemanticsException state opens
a dialog window to notify the user of the founded syntax error.

For implementing the module Assignment of values to the variables module, we
created getAllVariables() method that finds all existing variables in the LinkedList <
Token > data structure, and it creates a two-dimensional array. The first dimension
saves the names of the variables and the second dimension stores the values of the
variables. Based on this array, we created the TableModel class which extends the
AbstractTableModel class and represents our table model. Thus, the model of our
table consists of two columns. The first column is called the Name (a name of a vari-
able), and the second one is called Value (the value of the variable). The number of
rows in the table is equal to the number of names of non-repeating variables. In ad-
dition, we override getColumnClass() method in the TableModel class. For the first
column, we set a value of String.class type and for the second column - Integer.class
type. An overriding of this method will strictly determine the types of values that
can be stored in the columns of the table. At the same time, the overriden method
getColumnClass() does not allow one to assign the value of a variable of any other
type except the Integer type.
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Fig. 3. A scheme of the shunting-yard algorithm
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Fig. 4. The scheme of the syntaxChecker() algorithm

Evaluation of the input expression module is the primary functionality of the de-
velopment software. For this module we created calculate() method. This method
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contains input parameter of the LinkedList < Token > type and output parameter of
the Object type.

The algorithm works as follows: it repeatedly reads tokens from the input data
structure LinkedList < Token > and processes it according to the rules listed below.
• If the token is a constant or a variable, the algorithm moves it onto the addition

LinkedList < Token > data structure.
• If the token is an unary operator, then algorithm extracts the token from the end of

the addition LinkedList < Token > data structure and applies this operator to this
token (operand). Then it writes the result to the end of the addition LinkedList <
Token > data structure.
• If the token is a binary operator, then the algorithm extracts two tokens from the

end of the addition LinkedList < Token > data structure and applies this operator
to these tokens (operands). Then it writes the result to the end of the addition
LinkedList < Token > data structure.

We simply note, that the Token class represents token. It contains information
about whether the token is an operator or an operand. If it is an operator, the Token
class also contains information about whether this operator is binary or unary, its
precedence etc.

After reading the whole input LinkedList < Token > data structure it stays empty
and after the addition LinkedList < Token > data structure contains only one element.
This element is a result after the evaluation of input expression.

For Painting the Abstract Syntax Tree module, we created Node class that repre-
sents recursive data structure of a tree. We also created the getTree() method, which
transform LinkedList < Token> data structure to the recursive data structure of a type
Node.

To draw and graphically visualize the AST tree, we use the ”JUNG” software
library. ”JUNG” - the Java Universal Network/Graph Framework - is a software
library that provides a common and extendible language for the modeling, analysis,
and visualization of data that can be represented as a graph or network. It is written
in Java, which allows JUNG-based applications to make use of the extensive built
in capabilities of the Java API, as well as those of other existing third-party Java
libraries [16]. The final step for the graphical visualization of the AST tree is the
development of createTree() method, which creates recursive Forest < Node,Edge >
data structure from the Node recursive data structure. In addition, in our application,
we implemented the function of saving the generated AST onto PDF file based on
the vector graphics. For this function, we decided to use the ”FreeHEP PDF Driver”
software library [17].

6. Conclusions

We presented in this paper the application that can process arithmetic and Boolean
expressions, their syntactic analysis, output in the form of a postfix notation and Abs-
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tract Syntax Tree, to identify incorrectly entered expressions (implementation of error
recovery) and interactive user intervention during entering data with subsequent eval-
uation of the results. Also, the application contains a function for saving a generated
Abstract Syntax Tree onto a PDF file based on the vector graphics. Moreover, this
function allows the user to use the generated vector graphics images in future re-
search. The application is going to be used as a learning tool for the students of the
course Semantics of programming languages:
• for preparing the lecture materials and laboratory exercises;
• for individual study and the for the experimental approach to learning; and
• for preparing the testing and exam materials.

A learning tool for expressions has an irreplaceable rôle in our software package.
We want to extend our learning software package with other modules based on op-
erational semantics with categorical structures and coalgebras according to [18] and
for the other important and relevant semantic methods.
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